Suppr超能文献

贝叶斯方法估计阈性状的 GEBVs。

Bayesian methods for estimating GEBVs of threshold traits.

机构信息

Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.

出版信息

Heredity (Edinb). 2013 Mar;110(3):213-9. doi: 10.1038/hdy.2012.65. Epub 2012 Oct 31.

Abstract

Estimation of genomic breeding values is the key step in genomic selection (GS). Many methods have been proposed for continuous traits, but methods for threshold traits are still scarce. Here we introduced threshold model to the framework of GS, and specifically, we extended the three Bayesian methods BayesA, BayesB and BayesCπ on the basis of threshold model for estimating genomic breeding values of threshold traits, and the extended methods are correspondingly termed BayesTA, BayesTB and BayesTCπ. Computing procedures of the three BayesT methods using Markov Chain Monte Carlo algorithm were derived. A simulation study was performed to investigate the benefit of the presented methods in accuracy with the genomic estimated breeding values (GEBVs) for threshold traits. Factors affecting the performance of the three BayesT methods were addressed. As expected, the three BayesT methods generally performed better than the corresponding normal Bayesian methods, in particular when the number of phenotypic categories was small. In the standard scenario (number of categories=2, incidence=30%, number of quantitative trait loci=50, h² = 0.3), the accuracies were improved by 30.4%, 2.4%, and 5.7% points, respectively. In most scenarios, BayesTB and BayesTCπ generated similar accuracies and both performed better than BayesTA. In conclusion, our work proved that threshold model fits well for predicting GEBVs of threshold traits, and BayesTCπ is supposed to be the method of choice for GS of threshold traits.

摘要

基因组育种值估计是基因组选择(GS)的关键步骤。已经提出了许多用于连续性状的方法,但用于阈性状的方法仍然很少。在这里,我们将阈模型引入 GS 框架中,具体来说,我们在阈模型的基础上扩展了用于估计阈性状基因组育种值的三种贝叶斯方法 BayesA、BayesB 和 BayesCπ,扩展后的方法分别称为 BayesTA、BayesTB 和 BayesTCπ。推导了使用马尔可夫链蒙特卡罗算法的三种 BayesT 方法的计算程序。进行了模拟研究,以研究所提出的方法在准确性方面的优势,即用基因组估计育种值(GEBV)来估计阈性状。讨论了影响三种 BayesT 方法性能的因素。正如预期的那样,与相应的正常贝叶斯方法相比,三种 BayesT 方法通常表现更好,尤其是当表型类别数量较少时。在标准情况下(类别数=2,发生率=30%,数量性状基因座=50,h²=0.3),准确性分别提高了 30.4%、2.4%和 5.7%。在大多数情况下,BayesTB 和 BayesTCπ 产生相似的准确性,并且两者都比 BayesTA 表现更好。总之,我们的工作证明阈模型非常适合预测阈性状的 GEBVs,并且 BayesTCπ 应该是阈性状 GS 的首选方法。

相似文献

1
Bayesian methods for estimating GEBVs of threshold traits.贝叶斯方法估计阈性状的 GEBVs。
Heredity (Edinb). 2013 Mar;110(3):213-9. doi: 10.1038/hdy.2012.65. Epub 2012 Oct 31.
6
Extension of the bayesian alphabet for genomic selection.贝叶斯字母在基因组选择中的扩展。
BMC Bioinformatics. 2011 May 23;12:186. doi: 10.1186/1471-2105-12-186.

引用本文的文献

本文引用的文献

3
QTLMAS 2010: simulated dataset.QTLMAS 2010:模拟数据集。
BMC Proc. 2011 May 27;5 Suppl 3(Suppl 3):S3. doi: 10.1186/1753-6561-5-S3-S3.
4
Extension of the bayesian alphabet for genomic selection.贝叶斯字母在基因组选择中的扩展。
BMC Bioinformatics. 2011 May 23;12:186. doi: 10.1186/1471-2105-12-186.
8
The impact of genetic architecture on genome-wide evaluation methods.遗传结构对全基因组评估方法的影响。
Genetics. 2010 Jul;185(3):1021-31. doi: 10.1534/genetics.110.116855. Epub 2010 Apr 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验