Suppr超能文献

利用保守基因进行细菌和古菌基因组的系统发育分析:超级树和超级矩阵。

Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices.

机构信息

Department of Medical Microbiology and Immunology and Department of Evolution and Ecology, University of California Davis, Davis, California, USA.

出版信息

PLoS One. 2013 Apr 25;8(4):e62510. doi: 10.1371/journal.pone.0062510. Print 2013.

Abstract

Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a "primary concordance" tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes.

摘要

迄今为止,已经有超过 3000 个微生物(细菌和古菌)基因组可供公开使用,这为研究进化基因组趋势提供了前所未有的机会,并为宏基因组学等各种其他研究提供了有价值的参考数据。当我们了解这些基因组序列彼此在系统发育上的关系时,它们的用途将大大增强。因此,我们在这里描述了我们重建所有可用细菌和古菌基因组系统发育的努力。我们确定了 24 个单拷贝、普遍存在的基因,这些基因适合进行这种系统发育分析。我们使用了两种方法来组合这 24 个基因的数据。首先,我们将所有基因的比对序列串联成一个单一的比对,然后使用 RAxML 从该比对中推断出最大似然(ML)树。其次,我们使用了一种相对较新的方法,即贝叶斯一致性分析(BCA),如 BUCKy 软件中实现的方法,其中 24 个单基因系统发育分析的结果用于生成“主要一致性”树。比较串联 ML 树和主要一致性(BUCKy)树的结果表明,这两种方法相对于从 16S rRNA 基因推断出的系统发育树,给出了相似的结果。在比较了结果和使用的方法后,我们得出结论,目前生成适合作为比较分析参考系统发育树的单个系统发育树的最佳方法是对保守的单拷贝基因的串联比对进行最大似然分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb40/3636077/cb6118cbbbfe/pone.0062510.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验