Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA,
J Gen Intern Med. 2013 Dec;28(12):1565-72. doi: 10.1007/s11606-013-2443-z. Epub 2013 May 4.
Interpretation of a diagnostic test result requires knowing what proportion of patients with a "similar" result has the condition in question. This information is often not readily available from the medical literature, or may be based on different clinical populations that make it nonapplicable. In certain settings, where correlated screening parameters and diagnostic data are available in electronic medical records, a representation of diagnostic test performance on "patients like my patient" can be obtained.
We sought to integrate patient demographic and physician practice information using a simplified nearest neighbor algorithm. We used this method to illustrate the relationship between tTG IgA test result and duodenal biopsy for celiac disease in a local diagnostic context.
We used a data set of 1,461 paired tissue transglutaminase (tTG) IgA and definitive duodenal biopsy results from Intermountain Healthcare with data on patient age and ordering physician specialty. This was split into a discovery set of 1,000 and a validation set of 461 paired results.
Accuracy of the local discovery data set in predicting probability of positive duodenal biopsy and confidence intervals around predicted probability in the test data compared to probabilities of positive biopsy implied from published logistic regression and from published sensitivity and specificity studies.
The near-neighbor method could estimate probability of clinical outcomes with predictive performance equivalent to other methods while adjusting probability estimates and confidence intervals to fit specific clinical situations.
Data from clinical encounters obtained from electronic medical records can yield prediction estimates that are tailored to the individual patient, local population, and healthcare delivery processes. Local analysis of diagnostic probability may be more clinically meaningful than probabilities inferred from published studies. This local utility may come at the expense of external validity and generalizability.
解释诊断测试结果需要知道具有“相似”结果的患者中有多少比例患有相关疾病。这些信息通常无法从医学文献中直接获得,或者可能基于不同的临床人群,导致其不适用。在某些情况下,如果电子病历中可以获得相关的筛查参数和诊断数据,则可以获得针对“与我患者相似的患者”的诊断测试性能表示。
我们试图使用简化的最近邻算法整合患者人口统计学和医生实践信息。我们在当地的诊断环境中,使用这种方法来说明抗组织转谷氨酰胺酶(tTG)IgA 检测结果与乳糜泻十二指肠活检之间的关系。
我们使用了来自 Intermountain Healthcare 的 1461 对组织转谷氨酰胺酶(tTG)IgA 和明确的十二指肠活检结果的数据,这些数据包含患者年龄和开单医生专业信息。这些数据被分为发现集(1000 对)和验证集(461 对)。
本地发现数据集预测阳性十二指肠活检概率的准确性,以及与发表的逻辑回归和发表的灵敏度和特异性研究推断的阳性活检概率相比,在测试数据中预测概率的置信区间。
近邻方法可以估计临床结果的概率,预测性能与其他方法相当,同时调整概率估计值和置信区间以适应特定的临床情况。
从电子病历中获取的临床数据可以产生针对个体患者、当地人群和医疗服务提供过程的预测估计。与从发表的研究中推断的概率相比,对诊断概率的本地分析可能更具临床意义。这种本地效用可能会以外部有效性和普遍性为代价。