School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
PLoS One. 2013 May 3;8(5):e62768. doi: 10.1371/journal.pone.0062768. Print 2013.
O-glycosylation of proteins in Neisseria meningitidis is catalyzed by PglL, which belongs to a protein family including WaaL O-antigen ligases. We developed two hidden Markov models that identify 31 novel candidate PglL homologs in diverse bacterial species, and describe several conserved sequence and structural features. Most of these genes are adjacent to possible novel target proteins for glycosylation. We show that in the general glycosylation system of N. meningitidis, efficient glycosylation of additional protein substrates requires local structural similarity to the pilin acceptor site. For some Neisserial PglL substrates identified by sensitive analytical approaches, only a small fraction of the total protein pool is modified in the native organism, whereas others are completely glycosylated. Our results show that bacterial protein O-glycosylation is common, and that substrate selection in the general Neisserial system is dominated by recognition of structural homology.
脑膜炎奈瑟菌中的蛋白质 O-糖基化由 PglL 催化,PglL 属于包括 WaaL O-抗原连接酶在内的蛋白质家族。我们开发了两个隐马尔可夫模型,用于鉴定不同细菌物种中的 31 种新型候选 PglL 同源物,并描述了一些保守的序列和结构特征。这些基因大多数都位于可能的新型糖基化靶蛋白附近。我们表明,在脑膜炎奈瑟菌的一般糖基化系统中,额外蛋白质底物的有效糖基化需要与菌毛受体位点的局部结构相似性。对于一些通过敏感分析方法鉴定的奈瑟氏菌 PglL 底物,只有一小部分总蛋白库在天然生物体内被修饰,而其他则完全被糖基化。我们的结果表明,细菌蛋白质 O-糖基化是普遍存在的,而在一般的奈瑟氏菌系统中,底物选择主要由结构同源性识别决定。