Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 1 Ave. A. Fresnel, 91767 Palaiseau, France.
Sci Rep. 2013;3:1829. doi: 10.1038/srep01829.
Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm(2). Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching.
畴壁是纳米尺度上分隔相反方向的铁磁畴的过渡区域,在用于数据存储和忆阻应用的自旋电子器件中有很大的应用前景。这些器件的状态与畴壁的位置有关,因此快速操作将需要可控的畴壁运动起始和高速的畴壁位移。这些过程传统上是通过通过铁磁纳米条 lateral 注入自旋极化电流的自旋转移扭矩来驱动的。然而,这种几何形状通常受到低最大壁速度和/或对过高电流密度的需求的限制。在这里,我们使用时间分辨磁输运测量,展示了通过磁隧道结的垂直注入自旋电流可以在数百纳米的距离上以~500 m/s 的速度驱动畴壁,电流密度在 6 MA/cm(2)量级。此外,这些测量提供了关于电流驱动畴壁介导的开关的随机和确定性方面的信息。