Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
Nature. 2013 Jul 4;499(7456):102-6. doi: 10.1038/nature12202. Epub 2013 May 22.
Influenza viruses pose a significant threat to the public and are a burden on global health systems. Each year, influenza vaccines must be rapidly produced to match circulating viruses, a process constrained by dated technology and vulnerable to unexpected strains emerging from humans and animal reservoirs. Here we use knowledge of protein structure to design self-assembling nanoparticles that elicit broader and more potent immunity than traditional influenza vaccines. The viral haemagglutinin was genetically fused to ferritin, a protein that naturally forms nanoparticles composed of 24 identical polypeptides. Haemagglutinin was inserted at the interface of adjacent subunits so that it spontaneously assembled and generated eight trimeric viral spikes on its surface. Immunization with this influenza nanoparticle vaccine elicited haemagglutination inhibition antibody titres more than tenfold higher than those from the licensed inactivated vaccine. Furthermore, it elicited neutralizing antibodies to two highly conserved vulnerable haemagglutinin structures that are targets of universal vaccines: the stem and the receptor binding site on the head. Antibodies elicited by a 1999 haemagglutinin-nanoparticle vaccine neutralized H1N1 viruses from 1934 to 2007 and protected ferrets from an unmatched 2007 H1N1 virus challenge. This structure-based, self-assembling synthetic nanoparticle vaccine improves the potency and breadth of influenza virus immunity, and it provides a foundation for building broader vaccine protection against emerging influenza viruses and other pathogens.
流感病毒对公众构成重大威胁,是全球卫生系统的负担。每年都必须迅速生产流感疫苗以匹配流行病毒,这一过程受到陈旧技术的限制,并且容易受到来自人类和动物宿主的意外新菌株的影响。在这里,我们利用蛋白质结构知识来设计自组装纳米颗粒,这些颗粒比传统流感疫苗引发更广泛和更强的免疫反应。将病毒血凝素基因融合到铁蛋白上,铁蛋白是一种天然形成由 24 个相同多肽组成的纳米颗粒的蛋白质。将血凝素插入相邻亚基的界面处,使其自发组装并在其表面生成八个三聚体病毒刺突。用这种流感纳米颗粒疫苗免疫可引起的血凝抑制抗体滴度比许可的灭活疫苗高 10 多倍。此外,它还引发了针对两种高度保守的、易受攻击的血凝素结构的中和抗体,这两种结构是通用疫苗的靶标:茎部和头部的受体结合部位。由 1999 年血凝素纳米颗粒疫苗引发的抗体中和了 1934 年至 2007 年的 H1N1 病毒,并保护雪貂免受 2007 年不匹配的 H1N1 病毒的攻击。这种基于结构的自组装合成纳米颗粒疫苗提高了流感病毒免疫的效力和广度,并为针对新兴流感病毒和其他病原体构建更广泛的疫苗保护提供了基础。