Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas Campinas, Brazil.
Front Physiol. 2013 May 15;4:103. doi: 10.3389/fphys.2013.00103. eCollection 2013.
Mitochondrial redox imbalance has been implicated in mechanisms of aging, various degenerative diseases and drug-induced toxicity. Statins are safe and well-tolerated therapeutic drugs that occasionally induce myotoxicity such as myopathy and rhabdomyolysis. Previous studies indicate that myotoxicity caused by statins may be linked to impairment of mitochondrial functions. Here, we report that 1-h incubation of permeabilized rat soleus muscle fiber biopsies with increasing concentrations of simvastatin (1-40 μM) slowed the rates of ADP-or FCCP-stimulated respiration supported by glutamate/malate in a dose-dependent manner, but caused no changes in resting respiration rates. Simvastatin (1 μM) also inhibited the ADP-stimulated mitochondrial respiration supported by succinate by 24% but not by TMPD/ascorbate. Compatible with inhibition of respiration, 1 μM simvastatin stimulated lactate release from soleus muscle samples by 26%. Co-incubation of muscle samples with 1 mM L-carnitine, 100 μM mevalonate or 10 μM coenzyme Q10 (Co-Q10) abolished simvastatin effects on both mitochondrial glutamate/malate-supported respiration and lactate release. Simvastatin (1 μM) also caused a 2-fold increase in the rate of hydrogen peroxide generation and a decrease in Co-Q10 content by 44%. Mevalonate, Co-Q10 or L-carnitine protected against stimulation of hydrogen peroxide generation but only mevalonate prevented the decrease in Co-Q10 content. Thus, independently of Co-Q10 levels, L-carnitine prevented the toxic effects of simvastatin. This suggests that mitochondrial respiratory dysfunction induced by simvastatin, is associated with increased generation of superoxide, at the levels of complexes-I and II of the respiratory chain. In all cases the damage to these complexes, presumably at the level of 4Fe-4S clusters, is prevented by L-carnitine.
线粒体氧化还原失衡与衰老机制、各种退行性疾病和药物诱导的毒性有关。他汀类药物是安全且耐受良好的治疗药物,但偶尔会引起肌毒性,如肌病和横纹肌溶解症。先前的研究表明,他汀类药物引起的肌毒性可能与线粒体功能障碍有关。在这里,我们报告说,用递增浓度的辛伐他汀(1-40 μM)孵育 1 小时的渗透化大鼠比目鱼肌纤维活检,以剂量依赖的方式减缓了谷氨酸/苹果酸支持的 ADP 或 FCCP 刺激的呼吸率,而对静息呼吸率没有影响。辛伐他汀(1 μM)也抑制了由琥珀酸支持的 ADP 刺激的线粒体呼吸,抑制率为 24%,但对 TMPD/抗坏血酸没有影响。与呼吸抑制一致,1 μM 辛伐他汀刺激比目鱼肌样品中的乳酸释放增加了 26%。肌肉样品与 1 mM L-肉碱、100 μM 甲羟戊酸或 10 μM 辅酶 Q10(Co-Q10)共同孵育,消除了辛伐他汀对谷氨酸/苹果酸支持的呼吸和乳酸释放的影响。辛伐他汀(1 μM)还使过氧化氢生成率增加了 2 倍,并使 Co-Q10 含量减少了 44%。甲羟戊酸、Co-Q10 或 L-肉碱可防止过氧化氢生成的刺激,但只有甲羟戊酸可防止 Co-Q10 含量的减少。因此,独立于 Co-Q10 水平,L-肉碱可防止辛伐他汀的毒性作用。这表明,辛伐他汀诱导的线粒体呼吸功能障碍与呼吸链复合体 I 和 II 水平的超氧化物生成增加有关。在所有情况下,L-肉碱都可防止这些复合体的损伤,推测是在 4Fe-4S 簇的水平上。