Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
Lab Chip. 2013 Aug 7;13(15):2990-8. doi: 10.1039/c3lc50424g.
This paper reports a polydimethylsiloxane microfluidic model system that can develop an array of nearly identical human microtissues with interconnected vascular networks. The microfluidic system design is based on an analogy with an electric circuit, applying resistive circuit concepts to design pressure dividers in serially-connected microtissue chambers. A long microchannel (550, 620 and 775 mm) creates a resistive circuit with a large hydraulic resistance. Two media reservoirs with a large cross-sectional area and of different heights are connected to the entrance and exit of the long microchannel to serve as a pressure source, and create a near constant pressure drop along the long microchannel. Microtissue chambers (0.12 μl) serve as a two-terminal resistive component with an input impedance >50-fold larger than the long microchannel. Connecting each microtissue chamber to two different positions along the long microchannel creates a series of pressure dividers. Each microtissue chamber enables a controlled pressure drop of a segment of the microchannel without altering the hydrodynamic behaviour of the microchannel. The result is a controlled and predictable microphysiological environment within the microchamber. Interstitial flow, a mechanical cue for stimulating vasculogenesis, was verified by finite element simulation and experiments. The simplicity of this design enabled the development of multiple microtissue arrays (5, 12, and 30 microtissues) by co-culturing endothelial cells, stromal cells, and fibrin within the microchambers over two and three week periods. This methodology enables the culturing of a large array of microtissues with interconnected vascular networks for biological studies and applications such as drug development.
本文报道了一种聚二甲基硅氧烷微流控模型系统,该系统能够开发出具有相互连通的血管网络的近乎相同的人类微组织阵列。微流控系统设计基于与电路的类比,将电阻电路概念应用于串联连接的微组织腔室中的压力分配器设计。长微通道(550、620 和 775 毫米)形成具有大液压阻力的电阻电路。两个具有大横截面积和不同高度的介质储液器连接到长微通道的入口和出口,用作压力源,并在长微通道中产生近乎恒定的压降。微组织腔室(0.12μl)用作具有输入阻抗比长微通道大 50 多倍的两个端子电阻元件。将每个微组织腔室连接到长微通道的两个不同位置,形成一系列分压器。每个微组织腔室允许微通道的一段受控压降,而不会改变微通道的流体动力学行为。结果是在微腔室内产生了受控和可预测的微生理环境。间质流是刺激血管生成的机械刺激,通过有限元模拟和实验进行了验证。这种设计的简单性使得能够通过在微腔室内共培养内皮细胞、基质细胞和纤维蛋白,在两周和三周的时间内开发出具有相互连通的血管网络的多个微组织阵列(5、12 和 30 个微组织)。这种方法能够培养具有相互连通的血管网络的大量微组织阵列,用于生物学研究和药物开发等应用。