Center for Molecular Biology and Neuroscience and Department of Biosciences, University of Oslo, Oslo, Norway.
J Bacteriol. 2013 Aug;195(15):3476-85. doi: 10.1128/JB.00276-13. Epub 2013 May 31.
Neisseria species express an O-linked glycosylation system in which functionally distinct proteins are elaborated with variable glycans. A major source of glycan diversity in N. meningitidis results from two distinct pglB alleles responsible for the synthesis of either N,N'-diacetylbacillosamine or glyceramido-acetamido trideoxyhexose that occupy the reducing end of the oligosaccharides. Alternative modifications at C-4 of the precursor UDP-4-amino are attributable to distinct C-terminal domains that dictate either acetyltransferase or glyceramidotransferase activity, encoded by pglB and pglB2, respectively. Naturally occurring alleles of pglB2 have homopolymeric tracts of either 7 or 8 adenosines (As) bridging the C-terminal open reading frame (ORF) and the ORF encompassing the conserved N-terminal domain associated with phosphoglycosyltransferase activity. In the work presented here, we explored the consequences of such pglB2 allele variation and found that, although both alleles are functional vis-à-vis glycosylation, the 7A form results in the expression of a single, multidomain protein, while the 8A variant elicits two single-domain proteins. We also found that the glyceramidotransferase activity-encoding domain is essential to protein glycosylation, showing the critical role of the C-4 modification of the precursor UDP-4-amino in the pathway. These findings were further extended and confirmed by examining the phenotypic consequences of extended poly(A) tract length variation. Although ORFs related to those of pglB2 are broadly distributed in eubacteria, they are primarily found as two distinct, juxtaposed ORFs. Thus, the neisserial pglB2 system provides novel insights into the potential influence of hypermutability on modular evolution of proteins by providing a unique snapshot of the progression of ongoing gene fusion.
奈瑟氏菌属表达一种 O-连接糖基化系统,其中功能不同的蛋白质与可变聚糖结合。脑膜炎奈瑟菌中聚糖多样性的主要来源是两个不同的 pglB 等位基因,它们分别负责合成 N,N'-二乙酰胞壁酰二胺或甘油酰胺基-乙酰氨基-三脱氧己糖,这些糖占据寡糖的还原端。前体 UDP-4-氨基的 C-4 上的替代修饰归因于不同的 C 末端结构域,这些结构域分别决定乙酰转移酶或甘油酰胺转移酶的活性,由 pglB 和 pglB2 编码。pglB2 的天然等位基因具有 7 或 8 个腺苷(As)的同聚体片段,连接 C 末端开放阅读框(ORF)和包含与磷酸糖基转移酶活性相关的保守 N 末端结构域的 ORF。在本研究中,我们探讨了这种 pglB2 等位基因变异的后果,发现尽管这两个等位基因在糖基化方面都是功能性的,但 7A 形式导致表达一种单一的、多结构域蛋白质,而 8A 变体则引发两种单结构域蛋白质。我们还发现,甘油酰胺转移酶活性编码结构域对蛋白质糖基化是必不可少的,表明前体 UDP-4-氨基的 C-4 修饰在该途径中起着关键作用。这些发现通过检查延长多 A 片段长度变异的表型后果得到了进一步扩展和证实。虽然与 pglB2 相关的 ORF 在真细菌中广泛分布,但它们主要作为两个不同的、毗邻的 ORF 存在。因此,奈瑟氏菌 pglB2 系统通过提供正在进行的基因融合的进展的独特快照,为蛋白质模块进化的高度可变性的潜在影响提供了新的见解。