Suppr超能文献

利用单次曝光斜向背面照明显微镜进行微循环的视频速率成像。

Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy.

机构信息

Boston University, Department of Biomedical Engineering, Boston, Massachusetts 02215, USA.

出版信息

J Biomed Opt. 2013 Jun;18(6):066007. doi: 10.1117/1.JBO.18.6.066007.

Abstract

Oblique back-illumination microscopy (OBM) is a new technique for simultaneous, independent measurements of phase gradients and absorption in thick scattering tissues based on widefield imaging. To date, OBM has been used with sequential camera exposures, which reduces temporal resolution, and can produce motion artifacts in dynamic samples. Here, a variation of OBM that allows single-exposure operation with wavelength multiplexing and image splitting with a Wollaston prism is introduced. Asymmetric anamorphic distortion induced by the prism is characterized and corrected in real time using a graphics-processing unit. To demonstrate the capacity of single-exposure OBM to perform artifact-free imaging of blood flow, video-rate movies of microcirculation in ovo in the chorioallantoic membrane of the developing chick are presented. Imaging is performed with a high-resolution rigid Hopkins lens suitable for endoscopy.

摘要

斜向背反射显微镜(OBM)是一种新的技术,可基于宽场成像对厚散射组织中的相位梯度和吸收进行同时、独立的测量。迄今为止,OBM 已与逐次相机曝光一起使用,这降低了时间分辨率,并且在动态样本中可能产生运动伪影。此处,介绍了一种允许单曝光操作、波长复用和渥拉斯顿棱镜分光的 OBM 变体。使用图形处理单元实时对棱镜引起的非对称变形进行特征描述和校正。为了证明单曝光 OBM 具有无伪影成像血流的能力,展示了发育中的鸡胚尿囊绒毛膜中小循环的视频速率电影。使用适合内窥镜的高分辨率刚性 Hopkins 透镜进行成像。

相似文献

1
Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy.
J Biomed Opt. 2013 Jun;18(6):066007. doi: 10.1117/1.JBO.18.6.066007.
2
Phase-gradient microscopy in thick tissue with oblique back-illumination.
Nat Methods. 2012 Dec;9(12):1195-7. doi: 10.1038/nmeth.2219. Epub 2012 Oct 28.
3
Fast hyperspectral phase and amplitude imaging in scattering tissue.
Opt Lett. 2018 May 1;43(9):2058-2061. doi: 10.1364/OL.43.002058.
4
Fast volumetric phase-gradient imaging in thick samples.
Opt Express. 2014 Jan 13;22(1):1152-62. doi: 10.1364/OE.22.001152.
5
Basics of digital microscopy.
Curr Protoc Cytom. 2005 Feb;Chapter 12:Unit 12.2. doi: 10.1002/0471142956.cy1202s31.
6
Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device.
J Biomed Opt. 2013 Jun;18(6):060503. doi: 10.1117/1.JBO.18.6.060503.
7
High-contrast single-particle tracking by selective focal plane illumination microscopy.
Opt Express. 2008 May 12;16(10):7142-52. doi: 10.1364/oe.16.007142.
8
Super-resolution video microscopy of live cells by structured illumination.
Nat Methods. 2009 May;6(5):339-42. doi: 10.1038/nmeth.1324. Epub 2009 Apr 26.
9
Video-rate compressive holographic microscopic tomography.
Opt Express. 2011 Apr 11;19(8):7289-98. doi: 10.1364/OE.19.007289.
10
Fast optically sectioned fluorescence HiLo endomicroscopy.
J Biomed Opt. 2012 Feb;17(2):021105. doi: 10.1117/1.JBO.17.2.021105.

引用本文的文献

1
High-speed multifocus phase imaging in thick tissue.
Biomed Opt Express. 2021 Aug 23;12(9):5782-5792. doi: 10.1364/BOE.436247. eCollection 2021 Sep 1.
2
Label-free microendoscopy using a micro-needle imaging probe for deep tissue imaging.
Biomed Opt Express. 2020 Aug 11;11(9):4976-4988. doi: 10.1364/BOE.399428. eCollection 2020 Sep 1.
3
Imaging human blood cells in vivo with oblique back-illumination capillaroscopy.
Biomed Opt Express. 2020 Apr 6;11(5):2373-2382. doi: 10.1364/BOE.389088. eCollection 2020 May 1.
4
Image computing for fibre-bundle endomicroscopy: A review.
Med Image Anal. 2020 May;62:101620. doi: 10.1016/j.media.2019.101620. Epub 2019 Dec 25.
5
Dual-modality endomicroscopy with co-registered fluorescence and phase contrast.
Biomed Opt Express. 2016 Aug 10;7(9):3403-3411. doi: 10.1364/BOE.7.003403. eCollection 2016 Sep 1.
7
Phase-gradient contrast in thick tissue with a scanning microscope.
Biomed Opt Express. 2014 Jan 8;5(2):407-16. doi: 10.1364/BOE.5.000407. eCollection 2014 Feb 1.
8
Fast volumetric phase-gradient imaging in thick samples.
Opt Express. 2014 Jan 13;22(1):1152-62. doi: 10.1364/OE.22.001152.

本文引用的文献

1
Phase-gradient microscopy in thick tissue with oblique back-illumination.
Nat Methods. 2012 Dec;9(12):1195-7. doi: 10.1038/nmeth.2219. Epub 2012 Oct 28.
2
Single-exposure complementary aperture phase microscopy with polarization encoding.
Opt Lett. 2012 Sep 15;37(18):3798-800. doi: 10.1364/ol.37.003798.
3
Quantitative phase imaging using a partitioned detection aperture.
Opt Lett. 2012 Oct 1;37(19):4062-4. doi: 10.1364/OL.37.004062.
4
Laser oblique scanning optical microscopy (LOSOM) for phase relief imaging.
Opt Express. 2012 Jun 18;20(13):14100-8. doi: 10.1364/OE.20.014100.
5
Diffraction phase microscopy with white light.
Opt Lett. 2012 Mar 15;37(6):1094-6. doi: 10.1364/OL.37.001094.
6
Laplace field microscopy for label-free imaging of dynamic biological structures.
Opt Lett. 2011 Dec 1;36(23):4704-6. doi: 10.1364/OL.36.004704.
7
Pyramid phase microscopy.
Opt Lett. 2011 Sep 15;36(18):3636-8. doi: 10.1364/OL.36.003636.
8
Achromatization of Wollaston polarizing beam splitters.
Opt Lett. 2011 Apr 15;36(8):1332-4. doi: 10.1364/OL.36.001332.
9
Spatial light interference microscopy (SLIM).
Opt Express. 2011 Jan 17;19(2):1016-26. doi: 10.1364/OE.19.001016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验