Suppr超能文献

对混合细菌临床样本进行快速 16S rRNA 下一代测序,以诊断复杂细菌感染。

Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections.

机构信息

Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA.

出版信息

PLoS One. 2013 May 29;8(5):e65226. doi: 10.1371/journal.pone.0065226. Print 2013.

Abstract

Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp) with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF) patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times) and inexpensive for routine clinical use.

摘要

对包含复杂、多微生物患者标本的单个细菌物种进行分类,仍然是目前基于培养和分子微生物学技术在临床中应用的一个挑战。因此,我们借鉴宏基因组学研究中的方法,直接从患者身上快速分类临床标本中的细菌组成,而无需事先进行培养。我们结合了一种半导体深度测序方案,该方案产生的读长跨越 16S 核糖体 RNA 基因可变区 1 和 2(约 360bp),同时结合了一个去噪管道,可显著提高无错误序列的比例。由此产生的序列可用于进行准确的属或种水平的分类分配。我们通过深度测序、基于培养的菌株分型和批量 PCR 产物的 Sanger 测序来探索具有挑战性的、异质的临床标本中的微生物组成。我们报告称,深度测序可以对混合标本中的细菌物种进行编目,而这些标本无法通过常规临床方法获得可用数据。对囊性纤维化 (CF) 患者的痰液样本进行深度测序,揭示了标准临床培养方法未检测到的 CF 病原体,尤其是在低流行率或苛刻细菌的标本中。我们还发现,用于 CF 诊断工作的痰液可以根据气道微生物群的系统发育组成分为有限数量的组,这表明宏基因组分析可能在未来成为一种有用的临床诊断策略。该方法足够快速(理论上兼容当天的周转时间)且价格低廉,适用于常规临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9353/3666980/5bdf53beda3e/pone.0065226.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验