IEEE Trans Med Imaging. 2013 Oct;32(10):1840-52. doi: 10.1109/TMI.2013.2266258. Epub 2013 Jun 4.
Recent research has demonstrated that improved image segmentation can be achieved by multiple template fusion utilizing both label and intensity information. However, intensity weighted fusion approaches use local intensity similarity as a surrogate measure of local template quality for predicting target segmentation and do not seek to characterize template performance. This limits both the usefulness and accuracy of these techniques. Our work here was motivated by the observation that the local intensity similarity is a poor surrogate measure for direct comparison of the template image with the true image target segmentation. Although the true image target segmentation is not available, a high quality estimate can be inferred, and this in turn allows a principled estimate to be made of the local quality of each template at contributing to the target segmentation. We developed a fusion algorithm that uses probabilistic segmentations of the target image to simultaneously infer a reference standard segmentation of the target image and the local quality of each probabilistic segmentation. The concept of comparing templates to a hidden reference standard segmentation enables accurate assessments of the contribution of each template to inferring the target image segmentation to be made, and in practice leads to excellent target image segmentation. We have used the new algorithm for the multiple-template-based segmentation and parcellation of magnetic resonance images of the brain. Intensity and label map images of each one of the aligned templates are used to train a local Gaussian mixture model based classifier. Then, each classifier is used to compute the probabilistic segmentations of the target image. Finally, the generated probabilistic segmentations are fused together using the new fusion algorithm to obtain the segmentation of the target image. We evaluated our method in comparison to other state-of-the-art segmentation methods. We demonstrated that our new fusion algorithm has higher segmentation performance than these methods.
最近的研究表明,通过利用标签和强度信息的多个模板融合,可以实现更好的图像分割。然而,强度加权融合方法使用局部强度相似性作为局部模板质量的替代度量来预测目标分割,而不寻求描述模板性能。这限制了这些技术的有用性和准确性。我们的工作是受到这样一个观察的启发:局部强度相似性是直接比较模板图像与真实图像目标分割的一个很差的替代度量。尽管真实图像目标分割不可用,但可以推断出高质量的估计值,并且这反过来又可以对每个模板对目标分割的贡献的局部质量进行有原则的估计。我们开发了一种融合算法,该算法使用目标图像的概率分割来同时推断目标图像的参考标准分割和每个概率分割的局部质量。将模板与隐藏参考标准分割进行比较的概念可以对每个模板对推断目标图像分割的贡献进行准确评估,并且在实践中可以实现出色的目标图像分割。我们已经将新算法用于基于多个模板的磁共振脑图像分割和分割。每个对齐模板的强度和标签图图像都用于训练基于局部高斯混合模型的分类器。然后,每个分类器用于计算目标图像的概率分割。最后,使用新的融合算法融合生成的概率分割以获得目标图像的分割。我们将我们的方法与其他最先进的分割方法进行了评估。我们证明了我们的新融合算法比这些方法具有更高的分割性能。