Gorthi Subrahmanyam, Akhondi-Asl Alireza, Warfield Simon K
IEEE J Biomed Health Inform. 2015 Sep;19(5):1589-97. doi: 10.1109/JBHI.2015.2428279. Epub 2015 Apr 30.
In recent years, fusing segmentation results obtained based on multiple template images has become a standard practice in many medical imaging applications. Such multiple-templates-based methods are found to provide more reliable and accurate segmentations than the single-template-based methods. In this paper, we present a new approach for learning prior knowledge about the performance parameters of template images using the local intensity similarity information; we also propose a methodology to incorporate that prior knowledge through the estimation of the optimal MAP parameters. The proposed method is evaluated in the context of segmentation of structures in the brain magnetic resonance images by comparing our results with some of the state-of-the-art segmentation methods. These experiments have clearly demonstrated the advantages of learning and incorporating prior knowledge about the performance parameters using the proposed method.
近年来,融合基于多个模板图像获得的分割结果已成为许多医学成像应用中的标准做法。人们发现,与基于单模板的方法相比,这种基于多模板的方法能提供更可靠、准确的分割结果。在本文中,我们提出了一种利用局部强度相似性信息来学习模板图像性能参数先验知识的新方法;我们还提出了一种通过估计最优最大后验概率(MAP)参数来纳入该先验知识的方法。通过将我们的结果与一些最先进的分割方法进行比较,在所提出的方法在脑磁共振图像中结构分割的背景下进行了评估。这些实验清楚地证明了使用所提出的方法学习和纳入关于性能参数的先验知识的优势。