Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
Present address: Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.
Angew Chem Int Ed Engl. 2020 Jul 20;59(30):12493-12498. doi: 10.1002/anie.202003105. Epub 2020 Jun 3.
Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.
培育细胞壁成分经过修饰的植物是提高对病原体的抗性、增加生物质可消化性和调整其他重要特性的一种很有前途的策略。为了改变生物质结构,详细了解细胞壁结构和生物合成是先决条件。我们在此报告了一种基于聚糖阵列的高通量鉴定和表征植物细胞壁生物合成糖基转移酶(GT)的方法。我们证明,不同的异源表达的半乳糖基转移酶、岩藻糖基转移酶和木糖基转移酶可以将叠氮功能化的糖核苷酸供体转移到阵列上的选定的合成植物细胞壁低聚糖上,并且可以通过与炔基修饰的染料的 1,3-偶极环加成反应“在芯片上”可视化转移的单糖。同时筛选数以千计的假定 GT、核苷酸糖供体和寡糖接受体的组合的机会将极大地加速植物细胞壁生物合成研究。