Suppr超能文献

蛋白质结构预测关键评估第10轮(CASP10)中残基-残基接触预测的评估

Evaluation of residue-residue contact prediction in CASP10.

作者信息

Monastyrskyy Bohdan, D'Andrea Daniel, Fidelis Krzysztof, Tramontano Anna, Kryshtafovych Andriy

机构信息

Genome Center, University of California, Davis, California, 95616.

出版信息

Proteins. 2014 Feb;82 Suppl 2(0 2):138-53. doi: 10.1002/prot.24340. Epub 2013 Aug 31.

Abstract

We present the results of the assessment of the intramolecular residue-residue contact predictions from 26 prediction groups participating in the 10th round of the CASP experiment. The most recently developed direct coupling analysis methods did not take part in the experiment likely because they require a very deep sequence alignment not available for any of the 114 CASP10 targets. The performance of contact prediction methods was evaluated with the measures used in previous CASPs (i.e., prediction accuracy and the difference between the distribution of the predicted contacts and that of all pairs of residues in the target protein), as well as new measures, such as the Matthews correlation coefficient, the area under the precision-recall curve and the ranks of the first correctly and incorrectly predicted contact. We also evaluated the ability to detect interdomain contacts and tested whether the difficulty of predicting contacts depends upon the protein length and the depth of the family sequence alignment. The analyses were carried out on the target domains for which structural homologs did not exist or were difficult to identify. The evaluation was performed for all types of contacts (short, medium, and long-range), with emphasis placed on long-range contacts, i.e. those involving residues separated by at least 24 residues along the sequence. The assessment suggests that the best CASP10 contact prediction methods perform at approximately the same level, and comparably to those participating in CASP9.

摘要

我们展示了对参与第10轮CASP实验的26个预测小组所做的分子内残基-残基接触预测的评估结果。最新开发的直接耦合分析方法没有参与该实验,可能是因为它们需要非常深度的序列比对,而这对于114个CASP10目标中的任何一个都不可用。接触预测方法的性能通过先前CASP中使用的指标(即预测准确性以及预测接触的分布与目标蛋白中所有残基对的分布之间的差异)以及新的指标进行评估,如新的指标,如马修斯相关系数、精确召回率曲线下的面积以及首次正确和错误预测接触的排名。我们还评估了检测结构域间接触的能力,并测试了预测接触的难度是否取决于蛋白质长度和家族序列比对的深度。分析是在不存在结构同源物或难以识别结构同源物的目标结构域上进行的。对所有类型的接触(短程、中程和长程)进行了评估,重点是长程接触,即那些沿着序列至少相隔24个残基的残基之间的接触。评估表明,最好的CASP10接触预测方法的表现大致处于同一水平,与参与CASP9的方法相当。

相似文献

2
Evaluation of residue-residue contact predictions in CASP9.评估 CASP9 中残基-残基接触预测的结果。
Proteins. 2011;79 Suppl 10(Suppl 10):119-25. doi: 10.1002/prot.23160. Epub 2011 Sep 17.
4
Assessment of protein disorder region predictions in CASP10.CASP10中蛋白质无序区域预测的评估
Proteins. 2014 Feb;82 Suppl 2(0 2):127-37. doi: 10.1002/prot.24391. Epub 2013 Nov 22.
7
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.

引用本文的文献

6
Deep Learning in Protein Structural Modeling and Design.蛋白质结构建模与设计中的深度学习
Patterns (N Y). 2020 Nov 12;1(9):100142. doi: 10.1016/j.patter.2020.100142. eCollection 2020 Dec 11.

本文引用的文献

1
Definition and classification of evaluation units for CASP10.CASP10评估单元的定义与分类。
Proteins. 2014 Feb;82 Suppl 2(0 2):14-25. doi: 10.1002/prot.24434. Epub 2013 Nov 22.
3
Emerging methods in protein co-evolution.蛋白质共进化的新兴方法。
Nat Rev Genet. 2013 Apr;14(4):249-61. doi: 10.1038/nrg3414. Epub 2013 Mar 5.
4
Protein structure prediction from sequence variation.从序列变异预测蛋白质结构。
Nat Biotechnol. 2012 Nov;30(11):1072-80. doi: 10.1038/nbt.2419.
5
Deep architectures for protein contact map prediction.用于蛋白质接触图预测的深度架构。
Bioinformatics. 2012 Oct 1;28(19):2449-57. doi: 10.1093/bioinformatics/bts475. Epub 2012 Jul 30.
6
Genomics-aided structure prediction.基于基因组学的结构预测。
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10340-5. doi: 10.1073/pnas.1207864109. Epub 2012 Jun 12.
10
Predicting residue-residue contacts using random forest models.利用随机森林模型预测残基-残基接触。
Bioinformatics. 2011 Dec 15;27(24):3379-84. doi: 10.1093/bioinformatics/btr579. Epub 2011 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验