Department of Biology, Washington University, St. Louis, MO 63130, USA.
Neuron. 2013 Jun 5;78(5):799-806. doi: 10.1016/j.neuron.2013.04.003.
Systems of coupled oscillators abound in nature. How they establish stable phase relationships under diverse conditions is fundamentally important. The mammalian suprachiasmatic nucleus (SCN) is a self-sustained, synchronized network of circadian oscillators that coordinates daily rhythms in physiology and behavior. To elucidate the underlying topology and signaling mechanisms that modulate circadian synchrony, we discriminated the firing of hundreds of SCN neurons continuously over days. Using an analysis method to identify functional interactions between neurons based on changes in their firing, we characterized a GABAergic network comprised of fast, excitatory, and inhibitory connections that is both stable over days and changes in strength with time of day. By monitoring PERIOD2 protein expression, we provide the first evidence that these millisecond-level interactions actively oppose circadian synchrony and inject jitter into daily rhythms. These results provide a mechanism by which circadian oscillators can tune their phase relationships under different environmental conditions.
耦合振荡器系统在自然界中大量存在。它们在不同条件下如何建立稳定的相位关系,从根本上说是至关重要的。哺乳动物的视交叉上核(SCN)是一个自我维持的、同步的昼夜节律振荡器网络,协调生理和行为的日常节律。为了阐明调节昼夜同步的潜在拓扑结构和信号机制,我们连续几天对数百个 SCN 神经元的放电进行了区分。我们使用一种分析方法,根据神经元放电的变化来识别神经元之间的功能相互作用,从而描述了一个由快速、兴奋性和抑制性连接组成的 GABA 能网络,该网络在几天内是稳定的,并且随时间的推移而改变强度。通过监测 PERIOD2 蛋白的表达,我们首次提供了证据表明,这些毫秒级的相互作用积极地反对昼夜同步,并向日常节律中注入抖动。这些结果提供了一个机制,使昼夜振荡器可以在不同的环境条件下调整它们的相位关系。