EaStCHEM, School of Chemistry, University of St Andrews, St Andrews KY16 9ST, UK.
Nat Commun. 2013;4:2015. doi: 10.1038/ncomms3015.
Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, α-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso- and macro pore range, centred at 0.48, 4.0, 18 and 70 nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of α-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of α-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure.
多孔固体在解决社会所面临的一些主要能源相关问题方面发挥着重要作用。在这里,我们描述了一种具有分级四模态孔径分布的多孔固体α-MnO2,其范围涵盖微孔、介孔和大孔,中心孔径分别为 0.48、4.0、18 和 70nm。这种分级四模态结构是由前驱体溶液中钾离子在多孔二氧化硅模板的通道内存在而产生的;钾离子的大小决定了α-MnO2 的微孔尺寸,而其与二氧化硅的反应则导致了更大的介孔和大孔,而不会破坏模板的介孔结构。分级四模态孔径分布影响了α-MnO2 作为锂电池阴极和催化剂的性能,与只有微孔或双模态微孔/介孔的对应物相比,其行为发生了变化。该方法已扩展到具有分级孔结构的 LiMn2O4 的制备。