Suppr超能文献

果蝇中厌恶趋化作用的特定运动学和与运动相关的神经元。

Specific kinematics and motor-related neurons for aversive chemotaxis in Drosophila.

机构信息

Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

Curr Biol. 2013 Jul 8;23(13):1163-72. doi: 10.1016/j.cub.2013.05.008. Epub 2013 Jun 13.

Abstract

BACKGROUND

Chemotaxis, the ability to direct movements according to chemical cues in the environment, is important for the survival of most organisms. The vinegar fly, Drosophila melanogaster, displays robust olfactory aversion and attraction, but how these behaviors are executed via changes in locomotion remains poorly understood. In particular, it is not clear whether aversion and attraction bidirectionally modulate a shared circuit or recruit distinct circuits for execution.

RESULTS

Using a quantitative behavioral assay, we determined that both aversive and attractive odorants modulate the initiation and direction of turns but display distinct kinematics. Using genetic tools to perturb these behaviors, we identified specific populations of neurons required for aversion, but not for attraction. Inactivation of these populations of cells affected the completion of aversive turns, but not their initiation. Optogenetic activation of the same populations of cells triggered a locomotion pattern resembling aversive turns. Perturbations in both the ellipsoid body and the ventral nerve cord, two regions involved in motor control, resulted in defects in aversion.

CONCLUSIONS

Aversive chemotaxis in vinegar flies triggers ethologically appropriate kinematics distinct from those of attractive chemotaxis and requires specific motor-related neurons.

摘要

背景

趋化性,即根据环境中的化学线索来定向运动的能力,对大多数生物的生存都很重要。黑腹果蝇表现出强烈的嗅觉回避和吸引,但这些行为如何通过运动的变化来执行,仍知之甚少。特别是,回避和吸引是否双向调节共享回路,或者为执行而招募不同的回路,尚不清楚。

结果

我们使用定量行为测定法确定了回避和吸引气味都调节转弯的起始和方向,但表现出不同的运动学特征。使用遗传工具干扰这些行为,我们确定了回避行为所需的特定神经元群体,但不是吸引行为所需的群体。这些细胞群体的失活影响了回避转弯的完成,但不影响其起始。相同细胞群体的光遗传学激活引发了类似于回避转弯的运动模式。椭圆体和腹神经索这两个参与运动控制的区域的干扰都导致了回避缺陷。

结论

黑腹果蝇的回避性趋化作用引发了与吸引性趋化作用不同的、适合行为的运动学特征,需要特定的与运动相关的神经元。

相似文献

2
Drosophila chemotaxis: a first look with neurogenetics.果蝇趋化性:神经遗传学的初步研究
Fly (Austin). 2014;8(1):3-6. doi: 10.4161/fly.26685. Epub 2013 Oct 3.
8
Olfactory proxy detection of dietary antioxidants in Drosophila.果蝇中膳食抗氧化剂的嗅觉代理检测。
Curr Biol. 2015 Feb 16;25(4):455-66. doi: 10.1016/j.cub.2014.11.062. Epub 2015 Jan 22.
9
Spatial representation of odorant valence in an insect brain.昆虫脑中气味效价的空间表达。
Cell Rep. 2012 Apr 19;1(4):392-9. doi: 10.1016/j.celrep.2012.03.002. Epub 2012 Apr 20.
10
Food-derived volatiles enhance consumption in .食物衍生的挥发物可增强. 的摄取。
J Exp Biol. 2019 May 29;222(Pt 10):jeb202762. doi: 10.1242/jeb.202762.

引用本文的文献

1
Response Plasticity of Olfactory Sensory Neurons.嗅觉感觉神经元的反应可塑性。
Int J Mol Sci. 2024 Jun 28;25(13):7125. doi: 10.3390/ijms25137125.

本文引用的文献

3
A GAL4-driver line resource for Drosophila neurobiology.用于果蝇神经生物学的 GAL4 驱动子线资源。
Cell Rep. 2012 Oct 25;2(4):991-1001. doi: 10.1016/j.celrep.2012.09.011. Epub 2012 Oct 11.
6
Neuronal microcircuits for decision making in C. elegans.线虫进行决策的神经元微电路。
Curr Opin Neurobiol. 2012 Aug;22(4):580-91. doi: 10.1016/j.conb.2012.05.005. Epub 2012 Jun 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验