Suppr超能文献

Loom 敏感神经元将果蝇视觉系统中的计算与行为联系起来。

Loom-sensitive neurons link computation to action in the Drosophila visual system.

机构信息

Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.

出版信息

Curr Biol. 2012 Mar 6;22(5):353-62. doi: 10.1016/j.cub.2012.01.007. Epub 2012 Feb 2.

Abstract

BACKGROUND

Many animals extract specific cues from rich visual scenes to guide appropriate behaviors. Such cues include visual motion signals produced both by self-movement and by moving objects in the environment. The complexity of these signals requires neural circuits to link particular patterns of motion to specific behavioral responses.

RESULTS

Through electrophysiological recordings, we characterize genetically identified neurons in the optic lobe of Drosophila that are specifically tuned to detect motion signals produced by looming objects on a collision course with the fly. Using a genetic manipulation to specifically silence these neurons, we demonstrate that signals from these cells are important for flies to efficiently initiate the loom escape response. Moreover, through targeted expression of channelrhodopsin in these cells, in flies that are blind, we reveal that optogenetic stimulation of these neurons is typically sufficient to elicit escape, even in the absence of any visual stimulus.

CONCLUSIONS

In this compact nervous system, a small group of neurons that extract a specific visual cue from local motion inputs serve to trigger the ethologically appropriate behavioral response.

摘要

背景

许多动物从丰富的视觉场景中提取特定线索来引导适当的行为。这些线索包括由自身运动和环境中移动的物体产生的视觉运动信号。这些信号的复杂性要求神经回路将特定的运动模式与特定的行为反应联系起来。

结果

通过电生理记录,我们对果蝇的视神经叶中经基因鉴定的特定神经元进行了特征描述,这些神经元专门用于检测与苍蝇碰撞的逼近物体产生的运动信号。通过对这些神经元进行特定的基因沉默操作,我们证明来自这些细胞的信号对于苍蝇有效地启动逼近逃避反应是很重要的。此外,通过在这些细胞中靶向表达通道视紫红质,在失明的苍蝇中,我们揭示了光遗传学刺激这些神经元通常足以引发逃避反应,即使在没有任何视觉刺激的情况下也是如此。

结论

在这个紧凑的神经系统中,一小群从局部运动输入中提取特定视觉线索的神经元用于触发适当的行为反应。

相似文献

1
Loom-sensitive neurons link computation to action in the Drosophila visual system.
Curr Biol. 2012 Mar 6;22(5):353-62. doi: 10.1016/j.cub.2012.01.007. Epub 2012 Feb 2.
2
Escape behavior: linking neural computation to action.
Curr Biol. 2012 Mar 6;22(5):R152-3. doi: 10.1016/j.cub.2012.01.034.
3
Optogenetic control of fly optomotor responses.
J Neurosci. 2013 Aug 21;33(34):13927-34. doi: 10.1523/JNEUROSCI.0340-13.2013.
4
Lobula-specific visual projection neurons are involved in perception of motion-defined second-order motion in Drosophila.
J Exp Biol. 2013 Feb 1;216(Pt 3):524-34. doi: 10.1242/jeb.079095. Epub 2012 Oct 17.
5
The diversity of lobula plate tangential cells (LPTCs) in the Drosophila motion vision system.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Mar;206(2):139-148. doi: 10.1007/s00359-019-01380-y. Epub 2019 Nov 11.
7
Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
J Neurosci. 2018 Dec 12;38(50):10725-10733. doi: 10.1523/JNEUROSCI.1695-18.2018. Epub 2018 Oct 29.
8
Visual motion sensitivity in descending neurons in the hoverfly.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Mar;206(2):149-163. doi: 10.1007/s00359-020-01402-0. Epub 2020 Jan 28.
9
Looming responses of telencephalic neurons in the pigeon are modulated by optic flow.
Brain Res. 2009 Dec 11;1305:40-6. doi: 10.1016/j.brainres.2009.10.008. Epub 2009 Oct 12.
10
Fly vision: neural mechanisms of motion computation.
Curr Biol. 2008 Apr 22;18(8):R339-41. doi: 10.1016/j.cub.2008.02.046.

引用本文的文献

2
Vision-based collective motion: A locust-inspired reductionist model.
PLoS Comput Biol. 2024 Jan 29;20(1):e1011796. doi: 10.1371/journal.pcbi.1011796. eCollection 2024 Jan.
4
Convergent escape behaviour from distinct visual processing of impending collision in fish and grasshoppers.
J Physiol. 2023 Oct;601(19):4355-4373. doi: 10.1113/JP284022. Epub 2023 Sep 6.
5
Visual guidance of honeybees approaching a vertical landing surface.
J Exp Biol. 2023 Sep 1;226(17). doi: 10.1242/jeb.245956.
6
Brain Mechanisms Underlying Panic Attack and Panic Disorder.
Neurosci Bull. 2024 Jun;40(6):795-814. doi: 10.1007/s12264-023-01088-9. Epub 2023 Jul 21.
7
Dual Receptive Fields Underlying Target and Wide-Field Motion Sensitivity in Looming-Sensitive Descending Neurons.
eNeuro. 2023 Jul 24;10(7). doi: 10.1523/ENEURO.0188-23.2023. Print 2023 Jul.
8
Visual processing in the fly, from photoreceptors to behavior.
Genetics. 2023 May 26;224(2). doi: 10.1093/genetics/iyad064.
9
A fly inspired solution to looming detection for collision avoidance.
iScience. 2023 Mar 5;26(4):106337. doi: 10.1016/j.isci.2023.106337. eCollection 2023 Apr 21.
10
Approaching object acceleration differentially affects the predictions of neuronal collision avoidance models.
Biol Cybern. 2023 Apr;117(1-2):129-142. doi: 10.1007/s00422-023-00961-0. Epub 2023 Apr 8.

本文引用的文献

1
Defining the computational structure of the motion detector in Drosophila.
Neuron. 2011 Jun 23;70(6):1165-77. doi: 10.1016/j.neuron.2011.05.023.
2
Neuronal responses to looming objects in the superior colliculus of the cat.
Brain Behav Evol. 2011;77(3):193-205. doi: 10.1159/000327045. Epub 2011 May 6.
3
Collision detection as a model for sensory-motor integration.
Annu Rev Neurosci. 2011;34:1-19. doi: 10.1146/annurev-neuro-061010-113632.
5
ON and OFF pathways in Drosophila motion vision.
Nature. 2010 Nov 11;468(7321):300-4. doi: 10.1038/nature09545.
6
Synchronized neural input shapes stimulus selectivity in a collision-detecting neuron.
Curr Biol. 2010 Nov 23;20(22):2052-7. doi: 10.1016/j.cub.2010.10.025. Epub 2010 Nov 4.
7
Collision-sensitive neurons in the optic tectum of the bullfrog, Rana catesbeiana.
J Neurophysiol. 2010 Nov;104(5):2487-99. doi: 10.1152/jn.01055.2009. Epub 2010 Sep 1.
8
Fly motion vision.
Annu Rev Neurosci. 2010;33:49-70. doi: 10.1146/annurev-neuro-060909-153155.
10
A novel neuronal pathway for visually guided escape in Drosophila melanogaster.
J Neurophysiol. 2009 Aug;102(2):875-85. doi: 10.1152/jn.00073.2009. Epub 2009 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验