Macdonald Catriona, Singh Brajesh
Hawkesbury Institute for the Environment; University of Western Sydney; Penrith, Australia.
Bioengineered. 2014 Jan-Feb;5(1):5-9. doi: 10.4161/bioe.25320. Epub 2013 Jun 12.
Declining soil fertility and farm productivity is a major global concern in order to achieve food security for a burgeoning world population. It is reported that improving soil health alone can increase productivity by 10-15% and in combination with efficient plant traits, farm productivity can be increased up to 50-60%. In this article we explore the emerging microbial and bioengineering technologies, which can be employed to achieve the transformational increase in farm productivity and can simultaneously enhance environmental outcomes i.e., low green house gas (GHG) emissions. We argue that metagenomics, meta-transcriptomics and metabolomics have potential to provide fundamental knowledge on plant-microbes interactions necessary for new innovations to increase farm productivity. Further, these approaches provide tools to identify and select novel microbial/gene resources which can be harnessed in transgenic and designer plant technologies for enhanced resource use efficiencies.
土壤肥力下降和农业生产力降低是实现全球迅速增长人口粮食安全的一个主要全球性问题。据报道,仅改善土壤健康就能提高10%-15%的生产力,若结合高效的植物性状,农业生产力可提高至50%-60%。在本文中,我们探讨了新兴的微生物和生物工程技术,这些技术可用于实现农业生产力的转型增长,并能同时改善环境成果,即降低温室气体排放。我们认为,宏基因组学、宏转录组学和代谢组学有潜力提供有关植物-微生物相互作用的基础知识,这对于提高农业生产力的新创新至关重要。此外,这些方法提供了工具,可用于识别和选择新型微生物/基因资源,这些资源可用于转基因和设计植物技术,以提高资源利用效率。