Suppr超能文献

深度学习预测化学诱导的剂量依赖性和上下文特异性多重表型反应及其在个性化阿尔茨海默病药物再利用中的应用。

Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer's disease drug repurposing.

机构信息

Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York city, New York, United States of America.

Department of Computer Science, Hunter College, The City University of New York, New York city, New York, United States of America.

出版信息

PLoS Comput Biol. 2022 Aug 11;18(8):e1010367. doi: 10.1371/journal.pcbi.1010367. eCollection 2022 Aug.

Abstract

Predictive modeling of drug-induced gene expressions is a powerful tool for phenotype-based compound screening and drug repurposing. State-of-the-art machine learning methods use a small number of fixed cell lines as a surrogate for predicting actual expressions in a new cell type or tissue, although it is well known that drug responses depend on a cellular context. Thus, the existing approach has limitations when applied to personalized medicine, especially for many understudied diseases whose molecular profiles are dramatically different from those characterized in the training data. Besides the gene expression, dose-dependent cell viability is another important phenotype readout and is more informative than conventional summary statistics (e.g., IC50) for characterizing clinical drug efficacy and toxicity. However, few computational methods can reliably predict the dose-dependent cell viability. To address the challenges mentioned above, we designed a new deep learning model, MultiDCP, to predict cellular context-dependent gene expressions and cell viability on a specific dosage. The novelties of MultiDCP include a knowledge-driven gene expression profile transformer that enables context-specific phenotypic response predictions of novel cells or tissues, integration of multiple diverse labeled and unlabeled omics data, the joint training of the multiple prediction tasks, and a teacher-student training procedure that allows us to utilize unreliable data effectively. Comprehensive benchmark studies suggest that MultiDCP outperforms state-of-the-art methods with unseen cell lines that are dissimilar from the cell lines in the supervised training in terms of gene expressions. The predicted drug-induced gene expressions demonstrate a stronger predictive power than noisy experimental data for downstream tasks. Thus, MultiDCP is a useful tool for transcriptomics-based drug repurposing and compound screening that currently rely on noisy high-throughput experimental data. We applied MultiDCP to repurpose individualized drugs for Alzheimer's disease in terms of efficacy and toxicity, suggesting that MultiDCP is a potentially powerful tool for personalized drug discovery.

摘要

药物诱导基因表达的预测建模是一种基于表型的化合物筛选和药物再利用的强大工具。最先进的机器学习方法使用少量固定细胞系作为预测新细胞类型或组织中实际表达的替代物,尽管众所周知,药物反应取决于细胞环境。因此,当应用于个性化医学时,现有的方法存在局限性,特别是对于许多研究不足的疾病,这些疾病的分子谱与在训练数据中描述的明显不同。除了基因表达外,剂量依赖性细胞活力是另一个重要的表型读数,比传统的汇总统计数据(例如 IC50)更能有效地描述临床药物疗效和毒性。然而,很少有计算方法能够可靠地预测剂量依赖性细胞活力。为了解决上述挑战,我们设计了一种新的深度学习模型 MultiDCP,用于预测特定剂量下细胞环境依赖性基因表达和细胞活力。MultiDCP 的新颖之处包括一个知识驱动的基因表达谱转换器,该转换器能够对新的细胞或组织进行特定于上下文的表型反应预测,整合多个不同的标记和未标记的组学数据,联合训练多个预测任务,以及教师-学生培训程序,使我们能够有效地利用不可靠的数据。综合基准研究表明,MultiDCP 在未见的细胞系方面优于最先进的方法,这些细胞系在基因表达方面与监督训练中的细胞系不同。预测的药物诱导基因表达在下游任务中比嘈杂的实验数据具有更强的预测能力。因此,MultiDCP 是一种基于转录组学的药物再利用和化合物筛选的有用工具,目前这些方法依赖于嘈杂的高通量实验数据。我们将 MultiDCP 应用于阿尔茨海默病的个体化药物的再利用,从疗效和毒性方面进行评估,表明 MultiDCP 是个性化药物发现的潜在强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/663a/9398009/09883aa256b8/pcbi.1010367.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验