Bruggeman F J, Snoep J L, Westerhoff H V
Vrije Universiteit, Molecular Cell Physiology, Faculty of Earth and Life sciences, Amsterdam, The Netherlands.
IET Syst Biol. 2008 Nov;2(6):397-410. doi: 10.1049/iet-syb:20070065.
Cells adapt to changes in environmental conditions through the concerted action of signalling, gene expression and metabolic subsystems. The authors will discuss a theoretical framework addressing such integrated systems. This 'hierarchical analysis' was first developed as an extension to a metabolic control analysis. It builds on the phenomenon that often the communication between signalling, gene expression and metabolic subsystems is almost exclusively via regulatory interactions and not via mass flow interactions. This allows for the treatment of the said subsystems as 'levels' in a hierarchical view of the organisation of the molecular reaction network of cells. Such a hierarchical approach has as a major advantage that levels can be analysed conceptually in isolation of each other (from a local intra-level perspective) and at a later stage integrated via their interactions (from a global inter-level perspective). Hereby, it allows for a modular approach with variable scope. A number of different approaches have been developed for the analysis of hierarchical systems, for example hierarchical control analysis and modular response analysis. The authors, here, review these methods and illustrate the strength of these types of analyses using a core model of a system with gene expression, metabolic and signal transduction levels.
细胞通过信号传导、基因表达和代谢子系统的协同作用来适应环境条件的变化。作者将讨论一个针对此类整合系统的理论框架。这种“层次分析”最初是作为代谢控制分析的扩展而发展起来的。它基于这样一种现象,即信号传导、基因表达和代谢子系统之间的通信通常几乎完全是通过调节相互作用,而不是通过质量流相互作用。这使得在细胞分子反应网络组织的层次视图中,可以将上述子系统视为“层次”。这种层次方法的一个主要优点是,可以在概念上彼此孤立地分析各个层次(从局部层次内的角度),并在稍后阶段通过它们之间的相互作用进行整合(从全局层次间的角度)。因此,它允许采用具有可变范围的模块化方法。已经开发了许多不同的方法来分析层次系统,例如层次控制分析和模块化响应分析。作者在此回顾这些方法,并使用一个具有基因表达、代谢和信号转导层次的系统的核心模型来说明这类分析的优势。