Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
Radiother Oncol. 2013 Sep;108(3):541-7. doi: 10.1016/j.radonc.2013.06.005. Epub 2013 Jul 3.
The unfolded protein response (UPR) is activated in response to hypoxia-induced stress in the endoplasmic reticulum (ER) and consists of three distinct signaling arms. Here we explore the potential of targeting two of these arms with new potent small-molecule inhibitors designed against IRE1α and PERK.
We utilized shRNAs and small-molecule inhibitors of IRE1α (4μ8c) and PERK (GSK-compound 39). XBP1 splicing and DNAJB9 mRNA was measured by qPCR and was used to monitor IRE1α activity. PERK activity was monitored by immunoblotting eIF2α phosphorylation and qPCR of DDIT3 mRNA. Hypoxia tolerance was measured using proliferation and clonogenic cell survival assays of cells exposed to mild or severe hypoxia in the presence of the inhibitors.
Using knockdown experiments we show that PERK is essential for survival of KP4 cells while knockdown of IRE1α dramatically decreases the proliferation and survival of HCT116 during hypoxia. Further, we show that in response to both hypoxia and other ER stress-inducing agents both 4μ8c and the PERK inhibitor are selective and potent inhibitors of IRE1α and PERK activation, respectively. However, despite potent inhibition of IRE1α activation, 4μ8c had no effect on cell proliferation or clonogenic survival of cells exposed to hypoxia. This was in contrast to the inactivation of PERK signaling with the PERK inhibitor, which reduced tolerance to hypoxia and other ER stress inducing agents.
Our results demonstrate that IRE1α but not its splicing activity is important for hypoxic cell survival. The PERK signaling arm is uniquely important for promoting adaptation and survival during hypoxia-induced ER stress and should be the focus of future therapeutic efforts.
未折叠蛋白反应(UPR)是对内质网(ER)缺氧应激的反应,由三个不同的信号通路组成。在这里,我们探索了针对IRE1α和 PERK 的两种新的有效小分子抑制剂的靶向潜力。
我们利用 shRNA 和 IRE1α(4μ8c)和 PERK(GSK-compound 39)的小分子抑制剂。通过 qPCR 测量 XBP1 剪接和 DNAJB9 mRNA,用于监测 IRE1α 活性。通过免疫印迹法测定 PERK 活性 eIF2α 磷酸化和 DDIT3 mRNA 的 qPCR。在存在抑制剂的情况下,通过暴露于轻度或重度缺氧的细胞增殖和集落形成细胞存活测定来测量缺氧耐受性。
通过敲低实验,我们表明 PERK 对于 KP4 细胞的存活是必需的,而 IRE1α 的敲低则显著降低了 HCT116 在缺氧期间的增殖和存活。此外,我们表明,在缺氧和其他 ER 应激诱导剂的作用下,4μ8c 和 PERK 抑制剂分别是 IRE1α 和 PERK 激活的选择性和有效抑制剂。然而,尽管 IRE1α 的激活被有效抑制,但 4μ8c 对暴露于缺氧的细胞的增殖或集落形成存活没有影响。这与 PERK 抑制剂对 PERK 信号的失活形成对比,PERK 抑制剂降低了对缺氧和其他 ER 应激诱导剂的耐受性。
我们的结果表明,IRE1α但不是其剪接活性对于缺氧细胞的存活很重要。PERK 信号通路对于在缺氧诱导的 ER 应激期间促进适应和存活非常重要,应该是未来治疗努力的重点。