IEEE Trans Med Imaging. 2013 Nov;32(11):2022-33. doi: 10.1109/TMI.2013.2271707. Epub 2013 Jul 4.
Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.
扩散谱成像以牺牲大量成像时间为代价,揭示了详细的局部扩散特性。通过在 q 空间中欠采样并利用扩散概率密度函数 (pdf) 的先验知识进行图像重建,可以实现采集的加速。以前提出的方法以小波和全变差变换下的稀疏性或基于示例数据集训练的自适应字典的形式施加这种先验,以最大化表示的稀疏性。这些压缩感知 (CS) 方法需要使用工作站上运行的 MATLAB 进行全脑处理,处理时间大约为几小时。这项工作提出了两种基于字典的重建技术,它们使用解析解,比以前提出的基于字典的 CS 方法快两个数量级。第一种方法使用主成分分析 (PCA) 从训练数据中生成字典,并在 PCA 空间中进行重建。第二种提出的方法使用基于字典的伪逆和 Tikhonov 正则化进行重建。该字典可以使用 K-SVD 算法获得,也可以简单地是没有任何训练的 pdf 训练数据集。所有提出的方法都实现了每幅成像切片几秒钟的重建时间,并且重建质量与基于字典的 CS 算法相当。