Department of Plant and Microbial Biology, University of California, Berkely, California, USA.
PLoS One. 2013 Jul 12;8(7):e67995. doi: 10.1371/journal.pone.0067995. Print 2013.
In this paper we introduce an efficient algorithm for alignment of multiple large-scale biological networks. In this scheme, we first compute a probabilistic similarity measure between nodes that belong to different networks using a semi-Markov random walk model. The estimated probabilities are further enhanced by incorporating the local and the cross-species network similarity information through the use of two different types of probabilistic consistency transformations. The transformed alignment probabilities are used to predict the alignment of multiple networks based on a greedy approach. We demonstrate that the proposed algorithm, called SMETANA, outperforms many state-of-the-art network alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability. Our experiments show that SMETANA can easily align tens of genome-scale networks with thousands of nodes on a personal computer without any difficulty. The source code of SMETANA is available upon request. The source code of SMETANA can be downloaded from http://www.ece.tamu.edu/~bjyoon/SMETANA/.
在本文中,我们介绍了一种用于对齐多个大规模生物网络的有效算法。在这个方案中,我们首先使用半马尔可夫随机游走模型计算属于不同网络的节点之间的概率相似性度量。通过使用两种不同类型的概率一致性变换,将估计的概率与局部和跨物种网络相似性信息相结合,进一步增强了概率相似性度量。使用转换后的对齐概率基于贪婪方法预测多个网络的对齐。我们证明,称为 SMETANA 的提议算法在计算效率、对齐精度和可扩展性方面优于许多最先进的网络对齐技术。我们的实验表明,SMETANA 可以轻松地在个人计算机上对齐具有数千个节点的数十个基因组规模的网络,而不会有任何困难。SMETANA 的源代码可根据要求提供。SMETANA 的源代码可从 http://www.ece.tamu.edu/~bjyoon/SMETANA/ 下载。