Rueckert D, Burger P, Forbat S M, Mohiaddin R D, Yang G Z
Department of Computing, Imperial College, London, U.K.
IEEE Trans Med Imaging. 1997 Oct;16(5):581-90. doi: 10.1109/42.640747.
We present a new algorithm for the robust and accurate tracking of the aorta in cardiovascular magnetic resonance (MR) images. First, a rough estimate of the location and diameter of the aorta is obtained by applying a multiscale medial-response function using the available a priori knowledge. Then, this estimate is refined using an energy-minimizing deformable model which we define in a Markov-random-field (MRF) framework. In this context, we propose a global minimization technique based on stochastic relaxation, Simulated annealing (SA), which is shown to be superior to other minimization techniques, for minimizing the energy of the deformable model. We have evaluated the performance and robustness of the algorithm on clinical compliance studies in cardiovascular MR images. The segmentation and tracking has been successfully tested in spin-echo MR images of the aorta. The results show the ability of the algorithm to produce not only accurate, but also very reliable results in clinical routine applications.
我们提出了一种新算法,用于在心血管磁共振(MR)图像中对主动脉进行稳健且精确的跟踪。首先,利用可用的先验知识,通过应用多尺度内侧响应函数获得主动脉位置和直径的粗略估计。然后,使用我们在马尔可夫随机场(MRF)框架中定义的能量最小化可变形模型对该估计进行细化。在此背景下,我们提出了一种基于随机松弛的全局最小化技术——模拟退火(SA),结果表明该技术在最小化可变形模型的能量方面优于其他最小化技术。我们在心血管MR图像的临床合规性研究中评估了该算法的性能和稳健性。该分割和跟踪算法已在主动脉的自旋回波MR图像中成功测试。结果表明,该算法不仅能够在临床常规应用中产生准确的结果,而且还能产生非常可靠的结果。