一种混合方法来模拟复杂分子体系中的电子转移。
A hybrid approach to simulation of electron transfer in complex molecular systems.
机构信息
Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
出版信息
J R Soc Interface. 2013 Jul 24;10(87):20130415. doi: 10.1098/rsif.2013.0415. Print 2013 Oct 6.
Electron transfer (ET) reactions in biomolecular systems represent an important class of processes at the interface of physics, chemistry and biology. The theoretical description of these reactions constitutes a huge challenge because extensive systems require a quantum-mechanical treatment and a broad range of time scales are involved. Thus, only small model systems may be investigated with the modern density functional theory techniques combined with non-adiabatic dynamics algorithms. On the other hand, model calculations based on Marcus's seminal theory describe the ET involving several assumptions that may not always be met. We review a multi-scale method that combines a non-adiabatic propagation scheme and a linear scaling quantum-chemical method with a molecular mechanics force field in such a way that an unbiased description of the dynamics of excess electron is achieved and the number of degrees of freedom is reduced effectively at the same time. ET reactions taking nanoseconds in systems with hundreds of quantum atoms can be simulated, bridging the gap between non-adiabatic ab initio simulations and model approaches such as the Marcus theory. A major recent application is hole transfer in DNA, which represents an archetypal ET reaction in a polarizable medium. Ongoing work focuses on hole transfer in proteins, peptides and organic semi-conductors.
生物分子体系中的电子转移 (ET) 反应是物理、化学和生物学交叉界面上的一类重要过程。这些反应的理论描述构成了一个巨大的挑战,因为广泛的体系需要量子力学处理,并且涉及广泛的时间尺度。因此,只有小型模型体系可以使用现代密度泛函理论技术结合非绝热动力学算法进行研究。另一方面,基于马库斯开创性理论的模型计算描述了涉及多个假设的 ET,这些假设并不总是成立。我们回顾了一种多尺度方法,该方法将非绝热传播方案和线性标度量子化学方法与分子力学力场相结合,以实现对过剩电子动力学的无偏描述,同时有效减少自由度的数量。可以模拟纳秒级的 ET 反应,跨越非绝热从头算模拟和马库斯理论等模型方法之间的差距。最近的一个主要应用是 DNA 中的空穴转移,它代表了在极化介质中典型的 ET 反应。正在进行的工作集中在蛋白质、肽和有机半导体中的空穴转移。