Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland.
Int J Mol Sci. 2013 Jul 26;14(8):15595-614. doi: 10.3390/ijms140815595.
Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.
三组六倍体导入 triticale 系,具有 Triticum monococcum ssp. monococcum(栽培的 einkorn 小麦)基因和一个面包小麦 1D 染色体取代 1A 染色体,以及一组次生 triticale 系,在两代(F7 和 F8)中评估了谷物和面粉的物理化学和面团流变学特性。基因组原位杂交(GISH)和荧光原位杂交(FISH)证实了 1D/1A 染色体取代。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)、毛细管区带电泳和等位基因特异性分子标记评估了 einkorn 高分子量(HMW)谷蛋白亚基的存在或不存在以及编码 5+10 亚基的小麦 Glu-D1d 基因座。所有导入的 Triticale/T. monococcum 系和次生 triticale 系的物理化学性质(除了 Hagberg 降落值外)都存在显著差异。小麦 1D/1A 染色体取代也影响了这些特性。结果表明,在所有导入的 triticale 系中,蛋白质和谷朊粉含量、Zeleny 沉降值和吸水率都增加了。使用粉质仪、再混合器和 Kieffer 面团延展性系统估计的流变学参数也显示出面团混合特性、最大拉伸阻力(Rmax)和面团延展性的显著增加。具有 5+10 亚基的导入 triticale/T. monococcum 系具有特别有利的流变学参数。本研究结果表明,在六倍体次生 triticale 系和小麦 1D/1A 取代的背景下,栽培的 einkorn 基因组 Am 具有改善谷蛋白聚合物相互作用的潜力,是提高 triticale 质量的宝贵遗传资源。