MRC Clinical Trials Unit, Aviation House, 125 Kingsway, London WC2B 6NH, UK.
BMC Med Res Methodol. 2013 Jul 31;13:99. doi: 10.1186/1471-2288-13-99.
When multiple prognostic factors are adjusted for in the analysis of a randomised trial, it is unclear (1) whether it is necessary to account for each of the strata, formed by all combinations of the prognostic factors (stratified analysis), when randomisation has been balanced within each stratum (stratified randomisation), or whether adjusting for the main effects alone will suffice, and (2) the best method of adjustment in terms of type I error rate and power, irrespective of the randomisation method.
We used simulation to (1) determine if a stratified analysis is necessary after stratified randomisation, and (2) to compare different methods of adjustment in terms of power and type I error rate. We considered the following methods of analysis: adjusting for covariates in a regression model, adjusting for each stratum using either fixed or random effects, and Mantel-Haenszel or a stratified Cox model depending on outcome.
Stratified analysis is required after stratified randomisation to maintain correct type I error rates when (a) there are strong interactions between prognostic factors, and (b) there are approximately equal number of patients in each stratum. However, simulations based on real trial data found that type I error rates were unaffected by the method of analysis (stratified vs unstratified), indicating these conditions were not met in real datasets. Comparison of different analysis methods found that with small sample sizes and a binary or time-to-event outcome, most analysis methods lead to either inflated type I error rates or a reduction in power; the lone exception was a stratified analysis using random effects for strata, which gave nominal type I error rates and adequate power.
It is unlikely that a stratified analysis is necessary after stratified randomisation except in extreme scenarios. Therefore, the method of analysis (accounting for the strata, or adjusting only for the covariates) will not generally need to depend on the method of randomisation used. Most methods of analysis work well with large sample sizes, however treating strata as random effects should be the analysis method of choice with binary or time-to-event outcomes and a small sample size.
当在随机试验分析中调整多个预后因素时,存在以下两个问题尚未明确:(1)在各层内随机化均衡时,是否需要考虑由所有预后因素组合形成的各层(分层分析),或者仅调整主效应是否足够;(2)无论随机化方法如何,在第一类错误率和功效方面,哪种调整方法最佳。
我们采用模拟方法来:(1)确定在分层随机化后是否需要进行分层分析;(2)比较不同调整方法在功效和第一类错误率方面的差异。我们考虑了以下分析方法:在回归模型中调整协变量,使用固定或随机效应分别对每个层进行调整,以及根据结局使用Mantel-Haenszel 或分层 Cox 模型。
当(a)预后因素之间存在强烈交互作用,且(b)各层内患者数量大致相同时,分层随机化后需要进行分层分析才能维持正确的第一类错误率。但是,基于真实试验数据的模拟发现,分析方法(分层与非分层)对第一类错误率没有影响,表明这些条件在真实数据集并未得到满足。不同分析方法的比较发现,在小样本量和二分类或生存数据结局的情况下,大多数分析方法要么导致第一类错误率膨胀,要么降低功效;唯一的例外是使用分层随机效应的分层分析,它能给出名义第一类错误率和足够的功效。
除了在极端情况下,分层随机化后不太可能需要进行分层分析。因此,分析方法(考虑各层,或仅调整协变量)通常不需要取决于所使用的随机化方法。对于大样本量,大多数分析方法效果良好,但对于二分类或生存数据结局和小样本量,应选择将层视为随机效应的分析方法。