School of Medicine & Pharmacology, University of Western Australia, Crawley, Western Australia, Australia.
Inhal Toxicol. 2013 Aug;25(9):544-52. doi: 10.3109/08958378.2013.810679.
High concentrations of inspired oxygen contribute to the pathogenesis of neonatal bronchopulmonary dysplasia and adult acute respiratory distress syndrome. Animal models of hyperoxia-associated lung injury (HALI) are characterized by enhanced generation of reactive oxygen species (ROS) and an adaptive antioxidant response. ROS contribute to pathogenesis, partly through enhancing pro-inflammatory activity in macrophages. Uncoupling protein-2 (UCP2) is an inner mitochondrial membrane protein whose expression lowers mitochondrial superoxide (O₂ⁱ⁻) production. UCP2, therefore, has potential to contribute to antioxidant response. It is inducible in macrophages.
We hypothesized that induction of UCP2 occurred in response to pulmonary hyperoxia in vivo and that expression localized to pulmonary macrophages. We then investigated mechanisms of UCP2 regulation in hyperoxia-exposed macrophages in vitro and correlated changing UCP2 expression with mitochondrial membrane potential (Δψm) and O₂ⁱ⁻ production.
UCP2 is induced in lungs of mice within 1 h of hyperoxia exposure. Induction occurs in pulmonary alveolar macrophages in vivo, and can be replicated in vitro in isolated macrophages. UCP2 mRNA does not change. UCP2 increases quickly after the first hyperoxia-induced burst of mitochondrial O₂ⁱ⁻ generation. Suppression of Δψm and mitochondrial O₂ⁱ⁻ production follow and persist while UCP2 is elevated.
Induction of UCP2 is an early response to hyperoxia in pulmonary macrophages. The mechanism is post-transcriptional. UCP2 induction follows a transient rise in mitochondrial ROS generation. The subsequent falls in Δψm and mitochondrial O₂ⁱ⁻ support the notion that regulable UCP2 expression in macrophages acts to contain mitochondrial ROS generation. That, in turn, may limit inappropriate pro-inflammatory activation in HALI.
吸入高浓度氧气会导致新生儿支气管肺发育不良和成人急性呼吸窘迫综合征的发病机制。高氧相关性肺损伤(HALI)的动物模型的特点是活性氧(ROS)的产生增加和适应性抗氧化反应。ROS 有助于发病机制,部分原因是增强巨噬细胞中的促炎活性。解偶联蛋白 2(UCP2)是一种线粒体内膜蛋白,其表达降低线粒体超氧化物(O₂ⁱ⁻)的产生。因此,UCP2 有可能对抗氧化反应做出贡献。它可以在巨噬细胞中诱导。
我们假设 UCP2 的诱导发生在体内肺高氧暴露时,并且表达定位于肺巨噬细胞。然后,我们研究了体外高氧暴露的巨噬细胞中 UCP2 调节的机制,并将 UCP2 表达的变化与线粒体膜电位(Δψm)和 O₂ⁱ⁻的产生相关联。
UCP2 在高氧暴露后 1 小时内诱导小鼠肺部。诱导发生在体内肺泡巨噬细胞中,并且可以在分离的巨噬细胞中体外复制。UCP2 mRNA 没有变化。UCP2 在第一次高氧诱导的线粒体 O₂ⁱ⁻产生爆发后迅速增加。Δψm 和线粒体 O₂ⁱ⁻的抑制随后发生并持续,而 UCP2 升高。
UCP2 的诱导是肺巨噬细胞对高氧的早期反应。该机制是转录后。UCP2 的诱导伴随着线粒体 ROS 产生的短暂增加。随后的Δψm 和线粒体 O₂ⁱ⁻的下降支持了这样的观点,即巨噬细胞中可调节的 UCP2 表达可控制线粒体 ROS 的产生。反过来,这可能会限制 HALI 中不合适的促炎激活。