Suppr超能文献

室模型预测 VEGF 分泌并研究 VEGF 陷阱在荷瘤小鼠中的作用。

Compartment model predicts VEGF secretion and investigates the effects of VEGF trap in tumor-bearing mice.

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, MD , USA.

出版信息

Front Oncol. 2013 Jul 30;3:196. doi: 10.3389/fonc.2013.00196. eCollection 2013.

Abstract

Angiogenesis, the formation of new blood vessels from existing vasculature, is important in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies aimed at inhibiting tumor angiogenesis. Systems biology approaches, including computational modeling, are useful for understanding this complex biological process and can aid in the development of novel and effective therapeutics that target the VEGF family of proteins and receptors. We have developed a computational model of VEGF transport and kinetics in the tumor-bearing mouse, which includes three-compartments: normal tissue, blood, and tumor. The model simulates human tumor xenografts and includes human (VEGF121 and VEGF165) and mouse (VEGF120 and VEGF164) isoforms. The model incorporates molecular interactions between these VEGF isoforms and receptors (VEGFR1 and VEGFR2), as well as co-receptors (NRP1 and NRP2). We also include important soluble factors: soluble VEGFR1 (sFlt-1) and α-2-macroglobulin. The model accounts for transport via macromolecular transendothelial permeability, lymphatic flow, and plasma clearance. We have fit the model to available in vivo experimental data on the plasma concentration of free VEGF Trap and VEGF Trap bound to mouse and human VEGF in order to estimate the rates at which parenchymal cells (myocytes and tumor cells) and endothelial cells secrete VEGF. Interestingly, the predicted tumor VEGF secretion rates are significantly lower (0.007-0.023 molecules/cell/s, depending on the tumor microenvironment) than most reported in vitro measurements (0.03-2.65 molecules/cell/s). The optimized model is used to investigate the interstitial and plasma VEGF concentrations and the effect of the VEGF-neutralizing agent, VEGF Trap (aflibercept). This work complements experimental studies performed in mice and provides a framework with which to examine the effects of anti-VEGF agents, aiding in the optimization of such anti-angiogenic therapeutics as well as analysis of clinical data. The model predictions also have implications for biomarker discovery with anti-angiogenic therapies.

摘要

血管生成,即从现有脉管系统形成新血管,对肿瘤生长和转移很重要。血管内皮生长因子(VEGF)是血管生成的关键调节因子,已成为许多旨在抑制肿瘤血管生成的抗血管生成治疗的靶点。系统生物学方法,包括计算建模,可用于理解这一复杂的生物学过程,并有助于开发针对 VEGF 家族蛋白和受体的新型有效治疗方法。我们已经开发了一种在荷瘤小鼠中 VEGF 转运和动力学的计算模型,该模型包括三个隔室:正常组织、血液和肿瘤。该模型模拟了人类肿瘤异种移植物,并包括人类(VEGF121 和 VEGF165)和小鼠(VEGF120 和 VEGF164)同工型。该模型结合了这些 VEGF 同工型与受体(VEGFR1 和 VEGFR2)以及共受体(NRP1 和 NRP2)之间的分子相互作用。我们还包括重要的可溶性因子:可溶性 VEGFR1(sFlt-1)和α-2-巨球蛋白。该模型考虑了通过大分子跨内皮通透性、淋巴流动和血浆清除进行的转运。我们已经将模型拟合到游离 VEGF Trap 和 VEGF Trap 与小鼠和人类 VEGF 结合的体内实验数据,以估计实质细胞(心肌细胞和肿瘤细胞)和内皮细胞分泌 VEGF 的速率。有趣的是,预测的肿瘤 VEGF 分泌速率明显较低(取决于肿瘤微环境,为 0.007-0.023 个分子/细胞/秒),远低于大多数报道的体外测量值(0.03-2.65 个分子/细胞/秒)。优化后的模型用于研究间质和血浆 VEGF 浓度以及 VEGF 中和剂 VEGF Trap(阿柏西普)的影响。这项工作补充了在小鼠中进行的实验研究,并提供了一个框架,用于研究抗 VEGF 药物的作用,有助于优化此类抗血管生成治疗方法以及分析临床数据。该模型的预测也对使用抗血管生成治疗的生物标志物发现具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d62e/3727077/c48779676f1c/fonc-03-00196-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验