Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4055-62. doi: 10.1016/j.msec.2013.05.050. Epub 2013 Jun 5.
Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre).
多孔钛植入物是骨增强的常用选择。用于脊柱融合和非愈合性骨折修复的植入物必须在植入后促进血液流动,以便有足够的细胞迁移、营养物质和生长因子运输来刺激骨长入。增材制造技术允许大量的孔隙网络设计。本研究调查了选择性激光熔化技术提供的设计因素如何用于改变多个长度尺度上的植入物结构,以控制甚至定制流动。渗透性是一个方便的参数,用于描述流动,与结构的开放性(连通性和孔窗大小)、曲折度以及因此的流动剪切率相关。使用经过实验验证的计算模拟,我们展示了如何通过控制微观结构水平(微米)的表面粗糙度,以及通过改变中观水平(毫米)的支柱排序和密度,来利用增材制造来定制植入物特性。