Suppr超能文献

了解消费者移动健康使用意愿、同化情况及渠道偏好的决定因素。

Understanding determinants of consumer mobile health usage intentions, assimilation, and channel preferences.

作者信息

Rai Arun, Chen Liwei, Pye Jessica, Baird Aaron

机构信息

Center for Process Innovation and Department of Computer Information Systems, J Mack Robinson College of Business, Georgia State University, Atlanta, GA, USA.

出版信息

J Med Internet Res. 2013 Aug 2;15(8):e149. doi: 10.2196/jmir.2635.

Abstract

BACKGROUND

Consumer use of mobile devices as health service delivery aids (mHealth) is growing, especially as smartphones become ubiquitous. However, questions remain as to how consumer traits, health perceptions, situational characteristics, and demographics may affect consumer mHealth usage intentions, assimilation, and channel preferences.

OBJECTIVE

We examine how consumers' personal innovativeness toward mobile services (PIMS), perceived health conditions, health care availability, health care utilization, demographics, and socioeconomic status affect their (1) mHealth usage intentions and extent of mHealth assimilation, and (2) preference for mHealth as a complement or substitute for in-person doctor visits.

METHODS

Leveraging constructs from research in technology acceptance, technology assimilation, consumer behavior, and health informatics, we developed a cross-sectional online survey to study determinants of consumers' mHealth usage intentions, assimilation, and channel preferences. Data were collected from 1132 nationally representative US consumers and analyzed by using moderated multivariate regressions and ANOVA.

RESULTS

The results indicate that (1) 430 of 1132 consumers in our sample (37.99%) have started using mHealth, (2) a larger quantity of consumers are favorable to using mHealth as a complement to in-person doctor visits (758/1132, 66.96%) than as a substitute (532/1132, 47.00%), and (3) consumers' PIMS and perceived health conditions have significant positive direct influences on mHealth usage intentions, assimilation, and channel preferences, and significant positive interactive influences on assimilation and channel preferences. The independent variables within the moderated regressions collectively explained 59.70% variance in mHealth usage intentions, 60.41% in mHealth assimilation, 34.29% in preference for complementary use of mHealth, and 45.30% in preference for substitutive use of mHealth. In a follow-up ANOVA examination, we found that those who were more favorable toward using mHealth as a substitute for in-person doctor visits than as a complement indicated stronger intentions to use mHealth (F₁,₇₀₂=20.14, P<.001) and stronger assimilation of mHealth (F₁,₇₀₂=41.866, P<.001).

CONCLUSIONS

Multiple predictors are shown to have significant associations with mHealth usage intentions, assimilation, and channel preferences. We suggest that future initiatives to promote mHealth should shift targeting of consumers from coarse demographics to nuanced considerations of individual dispositions toward mobile service innovations, complementary or substitutive channel use preferences, perceived health conditions, health services availability and utilization, demographics, and socioeconomic characteristics.

摘要

背景

消费者将移动设备用作医疗服务辅助工具(移动医疗)的情况日益增多,尤其是随着智能手机变得无处不在。然而,消费者特征、健康认知、情境特征和人口统计学因素如何影响消费者的移动医疗使用意图、接受程度和渠道偏好,仍然存在疑问。

目的

我们研究消费者对移动服务的个人创新性(PIMS)、感知健康状况、医疗保健可及性、医疗保健利用情况、人口统计学因素和社会经济地位如何影响他们:(1)移动医疗使用意图和移动医疗接受程度;(2)对将移动医疗作为面对面看医生的补充或替代的偏好。

方法

利用技术接受、技术采纳、消费者行为和健康信息学研究中的概念,我们开展了一项横断面在线调查,以研究消费者移动医疗使用意图、接受程度和渠道偏好的决定因素。从1132名具有全国代表性的美国消费者那里收集了数据,并使用调节多元回归和方差分析进行了分析。

结果

结果表明:(1)我们样本中的1132名消费者中有430名(37.99%)已经开始使用移动医疗;(2)更多消费者倾向于将移动医疗作为面对面看医生的补充(758/1132,66.96%),而非替代(532/1132,47.00%);(3)消费者的PIMS和感知健康状况对移动医疗使用意图、接受程度和渠道偏好有显著的正向直接影响,对接受程度和渠道偏好有显著的正向交互影响。调节回归中的自变量共同解释了移动医疗使用意图中59.70%的方差、移动医疗接受程度中60.41%的方差、移动医疗补充使用偏好中34.29%的方差以及移动医疗替代使用偏好中45.30%的方差。在后续的方差分析中,我们发现那些更倾向于将移动医疗作为面对面看医生的替代而非补充的人,表明其使用移动医疗的意图更强(F₁,₇₀₂=20.14,P<.001),对移动医疗的接受程度也更强(F₁,₇₀₂=41.866,P<.001)。

结论

多项预测因素与移动医疗使用意图、接受程度和渠道偏好存在显著关联。我们建议,未来促进移动医疗的举措应将消费者目标从粗略的人口统计学因素,转向对个人对移动服务创新态度、补充或替代渠道使用偏好、感知健康状况、医疗服务可及性和利用情况、人口统计学因素以及社会经济特征的细致考量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb87/3742412/6b03131fd4e1/jmir_v15i8e149_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验