Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Microb Biotechnol. 2013 Nov;6(6):675-84. doi: 10.1111/1751-7915.12075. Epub 2013 Aug 6.
Poly-γ-glutamic acid (γ-PGA) is a promising environmental-friendly material with outstanding water solubility, biocompatibility and degradability. However, it is tough to determine the relationship between functional synthetic enzyme and the strains' yield or substrate dependency. We cloned γ-PGA synthetase genes pgsBCA and glutamate racemase gene racE from both L-glutamate-dependent γ-PGA-producing Bacillus licheniformis NK-03 and L-glutamate-independent B. amyloliquefaciens LL3 strains. The deduced RacE and PgsA from the two strains shared the identity of 84.5% and 78.53%, while PgsB and PgsC possessed greater similarity with 93.13% and 93.96%. The induced co-expression of pgsBCA and racE showed that the engineered Escherichia coli strains had the capacity of synthesizing γ-PGA, and LL3 derived PgsBCA had higher catalytic activity and enhanced productivity than NK-03 in Luria-Bertani medium containing glucose or L-glutamate. However, the differential effect was weakened when providing sufficient immediateness L-glutamate substrate, that is, the supply of substrate could be served as the ascendance upon γ-PGA production. Furthermore, RacE integration could enhance γ-PGA yield through improving the preferred d-glutamate content. This is the first report about co-expression of pgsBCA and racE from the two Bacillus strains, which will be of great value for the determination of the biosynthetic mechanism of γ-PGA.
聚-γ-谷氨酸(γ-PGA)是一种很有前途的环保材料,具有出色的水溶性、生物相容性和可降解性。然而,很难确定功能合成酶与菌株产量或底物依赖性之间的关系。我们从依赖 L-谷氨酸的 γ-PGA 生产菌地衣芽孢杆菌 NK-03 和非依赖 L-谷氨酸的解淀粉芽孢杆菌 LL3 中克隆了 γ-PGA 合成酶基因 pgsBCA 和谷氨酸消旋酶基因 racE。这两个菌株的 RacE 和 PgsA 的推导氨基酸序列具有 84.5%和 78.53%的同一性,而 PgsB 和 PgsC 具有 93.13%和 93.96%的更高相似性。pgsBCA 和 racE 的诱导共表达表明,工程化的大肠杆菌菌株具有合成 γ-PGA 的能力,并且在含有葡萄糖或 L-谷氨酸的 Luria-Bertani 培养基中,LL3 衍生的 PgsBCA 比 NK-03 具有更高的催化活性和增强的生产力。然而,当提供足够的即时 L-谷氨酸底物时,这种差异效应会减弱,也就是说,底物的供应可以作为 γ-PGA 生产的优势。此外,RacE 的整合可以通过提高 d-谷氨酸的含量来提高 γ-PGA 的产量。这是首次报道从这两个芽孢杆菌菌株共表达 pgsBCA 和 racE,这对于确定 γ-PGA 的生物合成机制具有重要意义。