Department of Mechanical Engineering, Columbia University , New York, New York 10027, United States.
ACS Nano. 2013 Sep 24;7(9):7931-6. doi: 10.1021/nn402954e. Epub 2013 Aug 14.
Atomically thin forms of layered materials, such as conducting graphene, insulating hexagonal boron nitride (hBN), and semiconducting molybdenum disulfide (MoS2), have generated great interests recently due to the possibility of combining diverse atomic layers by mechanical "stacking" to create novel materials and devices. In this work, we demonstrate field-effect transistors (FETs) with MoS2 channels, hBN dielectric, and graphene gate electrodes. These devices show field-effect mobilities of up to 45 cm(2)/Vs and operating gate voltage below 10 V, with greatly reduced hysteresis. Taking advantage of the mechanical strength and flexibility of these materials, we demonstrate integration onto a polymer substrate to create flexible and transparent FETs that show unchanged performance up to 1.5% strain. These heterostructure devices consisting of ultrathin two-dimensional (2D) materials open up a new route toward high-performance flexible and transparent electronics.
由于通过机械“堆叠”组合不同的原子层来创造新型材料和器件的可能性,最近原子层状材料的超薄形式,如导电石墨烯、绝缘六方氮化硼(hBN)和半导体二硫化钼(MoS2),引起了极大的兴趣。在这项工作中,我们展示了具有 MoS2 沟道、hBN 电介质和石墨烯栅电极的场效应晶体管(FET)。这些器件表现出高达 45 cm2/Vs 的场效应迁移率和低于 10 V 的工作栅极电压,并且迟滞现象大大减少。利用这些材料的机械强度和柔韧性,我们展示了将其集成到聚合物衬底上,以制造灵活透明的 FET,其性能在高达 1.5%应变时保持不变。这些由超薄二维(2D)材料组成的异质结构器件为高性能柔性透明电子产品开辟了新途径。