Suppr超能文献

网络推理方法的评估:如何应对欠定问题。

Assessment of network inference methods: how to cope with an underdetermined problem.

作者信息

Siegenthaler Caroline, Gunawan Rudiyanto

机构信息

Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.

出版信息

PLoS One. 2014 Mar 6;9(3):e90481. doi: 10.1371/journal.pone.0090481. eCollection 2014.

Abstract

The inference of biological networks is an active research area in the field of systems biology. The number of network inference algorithms has grown tremendously in the last decade, underlining the importance of a fair assessment and comparison among these methods. Current assessments of the performance of an inference method typically involve the application of the algorithm to benchmark datasets and the comparison of the network predictions against the gold standard or reference networks. While the network inference problem is often deemed underdetermined, implying that the inference problem does not have a (unique) solution, the consequences of such an attribute have not been rigorously taken into consideration. Here, we propose a new procedure for assessing the performance of gene regulatory network (GRN) inference methods. The procedure takes into account the underdetermined nature of the inference problem, in which gene regulatory interactions that are inferable or non-inferable are determined based on causal inference. The assessment relies on a new definition of the confusion matrix, which excludes errors associated with non-inferable gene regulations. For demonstration purposes, the proposed assessment procedure is applied to the DREAM 4 In Silico Network Challenge. The results show a marked change in the ranking of participating methods when taking network inferability into account.

摘要

生物网络推断是系统生物学领域一个活跃的研究领域。在过去十年中,网络推断算法的数量急剧增长,这凸显了对这些方法进行公平评估和比较的重要性。当前对推断方法性能的评估通常包括将算法应用于基准数据集,并将网络预测结果与黄金标准或参考网络进行比较。虽然网络推断问题通常被认为是欠定的,这意味着推断问题没有(唯一)解,但这种属性的后果尚未得到严格考虑。在这里,我们提出了一种评估基因调控网络(GRN)推断方法性能的新程序。该程序考虑了推断问题的欠定性质,其中基于因果推断来确定可推断或不可推断的基因调控相互作用。评估依赖于混淆矩阵的新定义,该定义排除了与不可推断基因调控相关的错误。为了演示目的,将所提出的评估程序应用于DREAM 4计算机模拟网络挑战赛。结果表明,在考虑网络可推断性时,参与方法的排名有显著变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fb3/3946176/94282fdce6ff/pone.0090481.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验