Suppr超能文献

利用遗传方法确定具有抗疟活性的化合物的作用靶点。

Using genetic methods to define the targets of compounds with antimalarial activity.

机构信息

Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States.

出版信息

J Med Chem. 2013 Oct 24;56(20):7761-71. doi: 10.1021/jm400325j. Epub 2013 Sep 6.

Abstract

Although phenotypic cellular screening has been used to drive antimalarial drug discovery in recent years, in some cases target-based drug discovery remains more attractive. This is especially true when appropriate high-throughput cellular assays are lacking, as is the case for drug discovery efforts that aim to provide a replacement for primaquine (4-N-(6-methoxyquinolin-8-yl)pentane-1,4-diamine), the only drug that can block Plasmodium transmission to Anopheles mosquitoes and eliminate liver-stage hypnozoites. At present, however, there are no known chemically validated parasite protein targets that are important in all Plasmodium parasite developmental stages and that can be used in traditional biochemical compound screens. We propose that a plethora of novel, chemically validated, cross-stage antimalarial targets still remain to be discovered from the ~5,500 proteins encoded by the Plasmodium genomes. Here we discuss how in vitro evolution of drug-resistant strains of Plasmodium falciparum and subsequent whole-genome analysis can be used to find the targets of some of the many compounds discovered in whole-cell phenotypic screens.

摘要

尽管表型细胞筛选近年来已被用于推动抗疟药物的发现,但在某些情况下,基于靶点的药物发现仍然更具吸引力。当缺乏适当的高通量细胞检测时尤其如此,例如旨在寻找替代伯氨喹(4-N-(6-甲氧基喹啉-8-基)戊烷-1,4-二胺)的药物发现工作就是如此,伯氨喹是唯一能够阻止疟原虫传播给按蚊并消除肝期休眠子的药物。然而,目前尚没有已知的经过化学验证的寄生虫蛋白靶点,这些靶点在所有疟原虫发育阶段都很重要,并且可以用于传统的生化化合物筛选。我们提出,从约 5500 种由疟原虫基因组编码的蛋白质中,仍然有大量的新型、经过化学验证的、跨阶段的抗疟靶点有待发现。在这里,我们讨论了如何通过体外筛选抗疟药物耐药株的疟原虫,并进行全基因组分析,以找到全细胞表型筛选中发现的许多化合物的靶点。

相似文献

1
Using genetic methods to define the targets of compounds with antimalarial activity.
J Med Chem. 2013 Oct 24;56(20):7761-71. doi: 10.1021/jm400325j. Epub 2013 Sep 6.
3
Genomic and Genetic Approaches to Studying Antimalarial Drug Resistance and Plasmodium Biology.
Trends Parasitol. 2021 Jun;37(6):476-492. doi: 10.1016/j.pt.2021.02.007. Epub 2021 Mar 11.
4
Advances in understanding the genetic basis of antimalarial drug resistance.
Curr Opin Microbiol. 2007 Aug;10(4):363-70. doi: 10.1016/j.mib.2007.07.007. Epub 2007 Aug 20.
5
Discovery of Dual-Stage Malaria Inhibitors with New Targets.
Antimicrob Agents Chemother. 2015 Dec 14;60(3):1430-7. doi: 10.1128/AAC.02110-15.
6
Menoctone Resistance in Malaria Parasites Is Conferred by M133I Mutations in Cytochrome That Are Transmissible through Mosquitoes.
Antimicrob Agents Chemother. 2017 Jul 25;61(8). doi: 10.1128/AAC.00689-17. Print 2017 Aug.
7
Extrachromosomal DNA amplicons in antimalarial-resistant Plasmodium falciparum.
Mol Microbiol. 2021 Apr;115(4):574-590. doi: 10.1111/mmi.14624. Epub 2020 Nov 19.
8
Plasmodium kinases as targets for new-generation antimalarials.
Future Med Chem. 2012 Dec;4(18):2295-310. doi: 10.4155/fmc.12.183.
9
Epidemiology: resistance mapping in malaria.
Nature. 2013 Jun 27;498(7455):446-7. doi: 10.1038/498446b.
10
That was then but this is now: malaria research in the time of an eradication agenda.
Science. 2010 May 14;328(5980):862-6. doi: 10.1126/science.1184785.

引用本文的文献

1
Exploring bioactive molecules released during inter- and intraspecific competition: A paradigm for novel antiparasitic drug discovery and design for human use.
Curr Res Parasitol Vector Borne Dis. 2025 Mar 25;7:100256. doi: 10.1016/j.crpvbd.2025.100256. eCollection 2025.
2
Integral Solvent-Induced Protein Precipitation for Target-Engagement Studies in .
ACS Infect Dis. 2024 Dec 13;10(12):4073-4086. doi: 10.1021/acsinfecdis.4c00418. Epub 2024 Dec 4.
3
Pyrimidine Azepine Targets the Complex and Displays Multistage Antimalarial Activity.
JACS Au. 2024 Oct 7;4(10):3942-3952. doi: 10.1021/jacsau.4c00674. eCollection 2024 Oct 28.
4
A kalihinol analog disrupts apicoplast function and vesicular trafficking in malaria.
Science. 2024 Sep 27;385(6716):eadm7966. doi: 10.1126/science.adm7966.
5
Near-Term Quantum Classification Algorithms Applied to Antimalarial Drug Discovery.
J Chem Inf Model. 2024 Aug 12;64(15):5922-5930. doi: 10.1021/acs.jcim.4c00953. Epub 2024 Jul 16.
6
Reaction hijacking inhibition of Plasmodium falciparum asparagine tRNA synthetase.
Nat Commun. 2024 Jan 31;15(1):937. doi: 10.1038/s41467-024-45224-z.
7
Chemo-proteomics in antimalarial target identification and engagement.
Med Res Rev. 2023 Nov;43(6):2303-2351. doi: 10.1002/med.21975. Epub 2023 May 26.
8
Current and emerging target identification methods for novel antimalarials.
Int J Parasitol Drugs Drug Resist. 2022 Dec;20:135-144. doi: 10.1016/j.ijpddr.2022.11.001. Epub 2022 Nov 11.
10
Torin 2 Derivative, NCATS-SM3710, Has Potent Multistage Antimalarial Activity through Inhibition of Phosphatidylinositol 4-Kinase ( PI4KIIIβ).
ACS Pharmacol Transl Sci. 2020 Sep 11;3(5):948-964. doi: 10.1021/acsptsci.0c00078. eCollection 2020 Oct 9.

本文引用的文献

2
Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families.
PLoS Genet. 2013;9(2):e1003293. doi: 10.1371/journal.pgen.1003293. Epub 2013 Feb 7.
3
Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21486-91. doi: 10.1073/pnas.1216016110. Epub 2012 Dec 11.
4
Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16823-8. doi: 10.1073/pnas.1204556109. Epub 2012 Oct 3.
5
A high-throughput assay for the identification of malarial transmission-blocking drugs and vaccines.
Int J Parasitol. 2012 Oct;42(11):999-1006. doi: 10.1016/j.ijpara.2012.08.009. Epub 2012 Sep 27.
6
A long neglected world malaria map: Plasmodium vivax endemicity in 2010.
PLoS Negl Trop Dis. 2012;6(9):e1814. doi: 10.1371/journal.pntd.0001814. Epub 2012 Sep 6.
7
Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases.
Nat Methods. 2012 Oct;9(10):993-8. doi: 10.1038/nmeth.2143. Epub 2012 Aug 26.
8
A framework for assessing the risk of resistance for anti-malarials in development.
Malar J. 2012 Aug 22;11:292. doi: 10.1186/1475-2875-11-292.
10
Liver-stage malaria parasites vulnerable to diverse chemical scaffolds.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8511-6. doi: 10.1073/pnas.1118370109. Epub 2012 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验