Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
Nat Commun. 2013;4:2326. doi: 10.1038/ncomms3326.
Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating shorter-lived (<10 ns) emission signals from organic chromophores or tissue autofluorescence. Here using a conventional animal imaging system not optimized for such long-lived excited states, we demonstrate improvement of signal to background contrast ratio by >50-fold in vitro and by >20-fold in vivo when imaging porous silicon nanoparticles. Time-gated imaging of porous silicon nanoparticles accumulated in a human ovarian cancer xenograft following intravenous injection is demonstrated in a live mouse. The potential for multiplexing of images in the time domain by using separate porous silicon nanoparticles engineered with different excited state lifetimes is discussed.
荧光成像是生物医学研究中最通用和广泛使用的可视化方法之一。然而,组织自体荧光是干扰体内荧光图像解释的主要障碍。光致发光多孔硅纳米粒子的异常长的发射寿命(5-13 μs)可以允许对体内组织进行时间门控成像,完全消除来自有机生色团或组织自体荧光的寿命更短(<10 ns)的发射信号。在这里,我们使用未针对这种长寿命激发态进行优化的常规动物成像系统,在体外证明了信号与背景对比度的改善>50 倍,在体内则改善了>20 倍,当对多孔硅纳米粒子进行成像时。在活鼠中,演示了经静脉注射后在人卵巢癌异种移植物中积累的多孔硅纳米粒子的时间门控成像。通过使用不同激发态寿命设计的不同多孔硅纳米粒子进行时间域图像的多重化的潜力也进行了讨论。