Suppr超能文献

利用红外活性振动模式和衰减全反射红外光谱研究半导体聚合物和小分子薄膜中的掺杂扩散。

Characterization of dopant diffusion within semiconducting polymer and small-molecule films using infrared-active vibrational modes and attenuated total reflectance infrared spectroscopy.

机构信息

LGS Innovations , 15 Vreeland Road, Florham Park, New Jersey 07932, United States.

出版信息

ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8300-7. doi: 10.1021/am401799k. Epub 2013 Aug 29.

Abstract

Understanding dopant diffusion within organic and polymeric semiconductors is of great importance toward the development of organic photovoltaic and electronic devices, many of which require layered structures with controlled doping profiles (e.g., p-n and p-i-n structures). The current paper demonstrates a new method to determine the diffusion and permeability coefficients for dopant diffusion within polymeric and small-molecule organic semiconductors using attenuated total reflectance infrared (ATR-IR) spectroscopy and taking advantage of the intense IR-active vibrational bands created when dopants such as iodine accept charge from a semiconducting polymer to generate polaronic species. The diffusion and permeability coefficients for iodine within poly(3-hexylthiophene) (P3HT) are determined to be 2.5×10(-11)±1.2×10(-11) cm2/s and 2.4×10(-8)±1.2×10(-8) cm2/s·atm, respectively. The approach is applied to P3HT/PCBM (1:1 mass ratio) films, and the diffusion and permeability coefficients through these composite films are determined to be 7.8×10(-11)±2.8×10(-11) cm2/s and 4.8×10(-8)±1.3×10(-8) cm2/s·atm, respectively. Finally, the approach is extended to determining iodine diffusion within the polycrystalline semiconductor tetraphenylporphyrin (TPP) in a bilayer film with P3HT, and the diffusion coefficient of iodine through TPP is determined to be 7.1×10(-14)±1.1×10(-14) cm2/s. Although the current paper determines diffusion and permeability for the dopant iodine, this approach should be applicable to a wide array of dopants and polymeric and small-molecule semiconductors of interest in photovoltaic and electronic applications.

摘要

理解掺杂剂在有机和聚合物半导体中的扩散对于开发有机光伏和电子器件非常重要,其中许多器件需要具有受控掺杂分布的层状结构(例如,p-n 和 p-i-n 结构)。本文展示了一种新方法,可使用衰减全反射红外(ATR-IR)光谱法并利用掺杂剂(例如碘)从半导体聚合物中接受电荷以产生极化子物种时产生的强 IR 活性振动带,来确定聚合物和小分子有机半导体中掺杂剂扩散和渗透系数。聚(3-己基噻吩)(P3HT)中碘的扩散和渗透系数分别确定为 2.5×10(-11)±1.2×10(-11) cm2/s 和 2.4×10(-8)±1.2×10(-8) cm2/s·atm。该方法应用于 P3HT/PCBM(质量比为 1:1)薄膜,通过这些复合薄膜的扩散和渗透系数分别确定为 7.8×10(-11)±2.8×10(-11) cm2/s 和 4.8×10(-8)±1.3×10(-8) cm2/s·atm。最后,该方法扩展到确定聚晶半导体四苯基卟啉(TPP)在与 P3HT 双层薄膜中的碘扩散,通过 TPP 的碘扩散系数确定为 7.1×10(-14)±1.1×10(-14) cm2/s。尽管本文确定了掺杂剂碘的扩散和渗透系数,但该方法应该适用于各种感兴趣的光伏和电子应用的掺杂剂和聚合物及小分子半导体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验