An Hyosung, Smith John W, Ji Bingqiang, Cotty Stephen, Zhou Shan, Yao Lehan, Kalutantirige Falon C, Chen Wenxiang, Ou Zihao, Su Xiao, Feng Jie, Chen Qian
Department of Materials Science and Engineering, University of Illinois, Urbana, IL, USA.
Materials Research Laboratory, University of Illinois, Urbana, IL, USA.
Sci Adv. 2022 Feb 25;8(8):eabk1888. doi: 10.1126/sciadv.abk1888. Epub 2022 Feb 23.
Biological morphogenesis has inspired many efficient strategies to diversify material structure and functionality using a fixed set of components. However, implementation of morphogenesis concepts to design soft nanomaterials is underexplored. Here, we study nanomorphogenesis in the form of the three-dimensional (3D) crumpling of polyamide membranes used for commercial molecular separation, through an unprecedented integration of electron tomography, reaction-diffusion theory, machine learning (ML), and liquid-phase atomic force microscopy. 3D tomograms show that the spatial arrangement of crumples scales with monomer concentrations in a form quantitatively consistent with a Turing instability. Membrane microenvironments quantified from the nanomorphologies of crumples are combined with the Spiegler-Kedem model to accurately predict methanol permeance. ML classifies vastly heterogeneous crumples into just four morphology groups, exhibiting distinct mechanical properties. Our work forges quantitative links between synthesis and performance in polymer thin films, which can be applicable to diverse soft nanomaterials.
生物形态发生学启发了许多高效策略,这些策略利用一组固定的组件使材料结构和功能多样化。然而,将形态发生学概念应用于设计软纳米材料的研究还不够充分。在这里,我们通过电子断层扫描、反应扩散理论、机器学习(ML)和液相原子力显微镜的前所未有的整合,研究了用于商业分子分离的聚酰胺膜三维(3D)起皱形式的纳米形态发生。3D断层扫描显示,褶皱的空间排列与单体浓度成比例,其形式与图灵不稳定性在数量上一致。从褶皱的纳米形态量化的膜微环境与Spiegler-Kedem模型相结合,以准确预测甲醇渗透率。ML将极其异质的褶皱仅分为四个形态组,这些组表现出不同的机械性能。我们的工作在聚合物薄膜的合成与性能之间建立了定量联系,这可应用于多种软纳米材料。