Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Nanoscale. 2013 Nov 21;5(22):10887-93. doi: 10.1039/c3nr02608f. Epub 2013 Aug 15.
We report the development of single, locally crystallized nanopores in HfO2 membranes for biosensing applications. HfO2 is chosen for its isoelectric point of 7.0, mechanical and chemical stability in solution, and for its potential as a high-k material for nanopore ionic field effect transistor applications. The HfO2 membrane is deposited on a graphene layer suspended over a 300 nm FIB hole, where graphene is used as the mechanical support. Exposure of the membrane to a focused electron beam causes crystallization in the vicinity of the nanopore during pore formation. We investigate the effects of crystallization on the electrical and surface properties of HfO2 films. Our surface analysis of HfO2 reveals improved hydrophilicity of crystallized HfO2, a notable advantage over the hydrophobicity of as-deposited HfO2. We also demonstrate detection of dsDNA translocation through HfO2 nanopores under various applied bias levels. In addition, our device architecture also presents a promising first step toward the realization of high-k HfO2 nanopore transistors.
我们报告了在 HfO2 膜中开发用于生物传感应用的单局部结晶纳米孔。选择 HfO2 是因为其等电点为 7.0,在溶液中的机械和化学稳定性,以及作为高 k 材料用于纳米孔离子场效应晶体管应用的潜力。HfO2 膜沉积在悬浮于 300nm FIB 孔上的石墨烯层上,其中石墨烯用作机械支撑。在孔形成过程中,将膜暴露于聚焦电子束会导致纳米孔附近的结晶。我们研究了结晶对 HfO2 薄膜的电学和表面性质的影响。我们对 HfO2 的表面分析表明,结晶 HfO2 的亲水性得到了改善,这是相对于沉积态 HfO2 的疏水性的显著优势。我们还证明了在不同外加偏压下通过 HfO2 纳米孔检测 dsDNA 易位。此外,我们的器件结构也为实现高 k HfO2 纳米孔晶体管迈出了有前途的第一步。