Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543.
Plant Physiol. 2013 Oct;163(2):815-29. doi: 10.1104/pp.113.221937. Epub 2013 Aug 15.
In this study, we develop a mechanistic understanding of how temperature affects growth and photosynthesis in 10 geographically and physiologically diverse strains of Synechococcus spp. We found that Synechococcus spp. are able to regulate photochemistry over a range of temperatures by using state transitions and altering the abundance of photosynthetic proteins. These strategies minimize photosystem II (PSII) photodamage by keeping the photosynthetic electron transport chain (ETC), and hence PSII reaction centers, more oxidized. At temperatures that approach the optimal growth temperature of each strain when cellular demand for reduced nicotinamide adenine dinucleotide phosphate (NADPH) is greatest, the phycobilisome (PBS) antenna associates with PSII, increasing the flux of electrons into the ETC. By contrast, under low temperature, when slow growth lowers the demand for NADPH and linear ETC declines, the PBS associates with photosystem I. This favors oxidation of PSII and potential increase in cyclic electron flow. For Synechococcus sp. WH8102, growth at higher temperatures led to an increase in the abundance of PBS pigment proteins, as well as higher abundance of subunits of the PSII, photosystem I, and cytochrome b6f complexes. This would allow cells to increase photosynthetic electron flux to meet the metabolic requirement for NADPH during rapid growth. These PBS-based temperature acclimation strategies may underlie the larger geographic range of this group relative to Prochlorococcus spp., which lack a PBS.
在这项研究中,我们深入了解了温度如何影响 10 种地理上和生理上多样化的聚球藻属(Synechococcus spp.)菌株的生长和光合作用。我们发现,聚球藻属能够通过状态转换和改变光合蛋白的丰度来调节光化学过程,从而在一定温度范围内适应。这些策略通过使光合作用电子传递链(ETC)和光系统 II(PSII)反应中心保持更氧化的状态,最大限度地减少 PSII 光破坏。在接近每种菌株最佳生长温度的温度下,当细胞对还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的需求最大时,藻胆体(PBS)天线与 PSII 结合,增加电子进入 ETC 的通量。相比之下,在低温下,当缓慢的生长降低了对 NADPH 的需求,线性 ETC 下降时,PBS 与光系统 I 结合。这有利于 PSII 的氧化和循环电子流的潜在增加。对于聚球藻属 WH8102 来说,在较高温度下生长会导致 PBS 色素蛋白的丰度增加,以及 PSII、光系统 I 和细胞色素 b6f 复合物的亚基丰度增加。这将使细胞能够增加光合电子流,以满足快速生长期间对 NADPH 的代谢需求。这些基于 PBS 的温度适应策略可能是该属相对于缺乏 PBS 的原绿球藻属(Prochlorococcus spp.)具有更大地理范围的基础。