Suppr超能文献

基于加权 k 最近邻的人类疾病相关 microRNAs 预测。

Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors.

机构信息

Key Laboratory of Database and Parallel Computing of Heilongjiang Province, School of Computer Science and Technology, Heilongjiang University, Harbin, China.

出版信息

PLoS One. 2013 Aug 8;8(8):e70204. doi: 10.1371/journal.pone.0070204. eCollection 2013.

Abstract

BACKGROUND

The identification of human disease-related microRNAs (disease miRNAs) is important for further investigating their involvement in the pathogenesis of diseases. More experimentally validated miRNA-disease associations have been accumulated recently. On the basis of these associations, it is essential to predict disease miRNAs for various human diseases. It is useful in providing reliable disease miRNA candidates for subsequent experimental studies.

METHODOLOGY/PRINCIPAL FINDINGS: It is known that miRNAs with similar functions are often associated with similar diseases and vice versa. Therefore, the functional similarity of two miRNAs has been successfully estimated by measuring the semantic similarity of their associated diseases. To effectively predict disease miRNAs, we calculated the functional similarity by incorporating the information content of disease terms and phenotype similarity between diseases. Furthermore, the members of miRNA family or cluster are assigned higher weight since they are more probably associated with similar diseases. A new prediction method, HDMP, based on weighted k most similar neighbors is presented for predicting disease miRNAs. Experiments validated that HDMP achieved significantly higher prediction performance than existing methods. In addition, the case studies examining prostatic neoplasms, breast neoplasms, and lung neoplasms, showed that HDMP can uncover potential disease miRNA candidates.

CONCLUSIONS

The superior performance of HDMP can be attributed to the accurate measurement of miRNA functional similarity, the weight assignment based on miRNA family or cluster, and the effective prediction based on weighted k most similar neighbors. The online prediction and analysis tool is freely available at http://nclab.hit.edu.cn/hdmpred.

摘要

背景

鉴定与人类疾病相关的 microRNA(疾病 miRNAs)对于进一步研究它们在疾病发病机制中的作用非常重要。最近积累了更多经过实验验证的 miRNA-疾病关联。在此基础上,预测各种人类疾病的疾病 miRNAs 至关重要。这有助于为后续的实验研究提供可靠的疾病 miRNA 候选物。

方法/主要发现:已知具有相似功能的 miRNAs 通常与相似的疾病相关,反之亦然。因此,可以通过测量与其相关疾病的语义相似性来成功估计两个 miRNAs 的功能相似性。为了有效地预测疾病 miRNAs,我们通过整合疾病术语的信息量和疾病之间的表型相似性来计算功能相似性。此外,由于 miRNA 家族或簇的成员更可能与相似的疾病相关,因此赋予它们更高的权重。提出了一种基于加权 k 个最相似邻居的新预测方法 HDMP 来预测疾病 miRNAs。实验验证了 HDMP 比现有方法具有更高的预测性能。此外,对前列腺肿瘤、乳腺肿瘤和肺肿瘤的案例研究表明,HDMP 可以发现潜在的疾病 miRNA 候选物。

结论

HDMP 的优异性能可归因于对 miRNA 功能相似性的准确测量、基于 miRNA 家族或簇的权重分配以及基于加权 k 个最相似邻居的有效预测。在线预测和分析工具可在 http://nclab.hit.edu.cn/hdmpred 免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10b/3738541/84975d727aa9/pone.0070204.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验