Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Biomicrofluidics. 2013 Jul 24;7(4):41301. doi: 10.1063/1.4816835. eCollection 2013 Jul.
This short review provides an overview of the impact micro- and nanotechnologies can make in studying epigenetic structures. The importance of mapping histone modifications on chromatin prompts us to highlight the complexities and challenges associated with histone mapping, as compared to DNA sequencing. First, the histone code comprised over 30 variations, compared to 4 nucleotides for DNA. Second, whereas DNA can be amplified using polymerase chain reaction, chromatin cannot be amplified, creating challenges in obtaining sufficient material for analysis. Third, while every person has only a single genome, there exist multiple epigenomes in cells of different types and origins. Finally, we summarize existing technologies for performing these types of analyses. Although there are still relatively few examples of micro- and nanofluidic technologies for chromatin analysis, the unique advantages of using such technologies to address inherent challenges in epigenetic studies, such as limited sample material, complex readouts, and the need for high-content screens, make this an area of significant growth and opportunity.
这篇简短的综述概述了微纳技术在研究表观遗传结构方面的作用。组蛋白修饰在染色质上的作图对于我们理解其重要性,这促使我们强调与 DNA 测序相比,组蛋白作图的复杂性和挑战性。首先,组蛋白密码由 30 多种变体组成,而 DNA 只有 4 种核苷酸。其次,虽然可以使用聚合酶链反应扩增 DNA,但不能扩增染色质,这给获取足够的分析材料带来了挑战。第三,虽然每个人只有一个基因组,但不同类型和来源的细胞中存在多个表观基因组。最后,我们总结了用于进行这些类型分析的现有技术。尽管用于染色质分析的微纳流控技术相对较少,但使用这些技术来解决表观遗传学研究中固有的挑战,如有限的样本材料、复杂的读出结果以及对高通量筛选的需求,具有独特的优势,这使得该领域具有显著的增长和机遇。