Biomanufacturing Research Institute and Technology Enterprise (BRITE) and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA.
J Biol Eng. 2013 Aug 21;7:19. doi: 10.1186/1754-1611-7-19. eCollection 2013.
Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs' antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores.
The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease).
The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on B. anthracis spores, which enhanced the sporicidal effect and stimulated the germination of surviving spores. SWCNTs-NIR treatment also altered the expression of germination, regulatory, and virulence-related genes in B. anthracis.
炭疽杆菌是一种病原体,可导致危及生命的疾病——炭疽。炭疽杆菌孢子对极端温度和恶劣化学物质具有高度抗性。炭疽杆菌孢子的失活对于确保环境安全和公共卫生至关重要。2001 年涉及炭疽杆菌孢子的生物恐怖袭击引起了公众的高度关注,并引发了广泛的炭疽杆菌孢子失活动力学研究。单壁碳纳米管 (SWCNTs) 作为一类新兴纳米材料,已被报道为一种强大的抗菌剂。此外,SWCNTs 上持续的近红外 (NIR) 辐射会引起过度的局部加热,从而增强 SWCNTs 的抗菌效果。在这项研究中,我们研究了 SWCNTs 与 NIR 处理相结合对炭疽杆菌孢子的影响。
结果表明,与单独使用 SWCNTs 处理相比,10μg/mL SWCNTs 与 20 分钟 NIR 联合处理将活菌数减少的百分比提高了一倍,抗菌效果显著提高(88%对 42%)。同时,SWCNTs-NIR 处理激活了存活孢子的萌发及其在萌发过程中的二吡啶羧酸(DPA)释放。结果表明,SWCNTs-NIR 处理对炭疽杆菌孢子具有双重作用:增强了杀菌效果并刺激了存活孢子的萌发。分子水平检查表明,SWCNTs-NIR 处理使本研究中测试的 6 个萌发相关基因中的 3 个基因的表达水平(>2 倍)增加,这与激活的萌发和 DPA 释放相关。SWCNTs-NIR 处理诱导或抑制了本研究中检测到的 3 个调节基因的表达。当 NIR 处理时间为 5 分钟或 25 分钟时,有 7 个毒力相关基因中的 3 个基因的表达水平(>2 倍降低)显著降低。
本研究结果表明,SWCNTs-NIR 处理对炭疽杆菌孢子具有双重作用,既增强了杀菌效果,又刺激了存活孢子的萌发。SWCNTs-NIR 处理还改变了炭疽杆菌中萌发、调节和毒力相关基因的表达。