Biometris, Wageningen University and Research Center, P.O Box 100, 6700 AC, Wageningen, The Netherlands.
Theor Appl Genet. 2020 Sep;133(9):2627-2638. doi: 10.1007/s00122-020-03621-0. Epub 2020 Jun 9.
Multi-parent populations multi-environment QTL experiments data should be analysed jointly to estimate the QTL effect variation within the population and between environments. Commonly, QTL detection in multi-parent populations (MPPs) data measured in multiple environments (ME) is done by analyzing genotypic values 'averaged' across environments. This method ignores the environment-specific QTL (QTLxE) effects. Running separate single environment analyses is a possibility to measure QTLxE effects, but those analyses do not model the genetic covariance due to the use of the same genotype in different environments. In this paper, we propose methods to analyse MPP-ME QTL experiments using simultaneously the data from several environments and modelling the genotypic covariance. Using data from the EU-NAM Flint population, we show that these methods estimate the QTLxE effects and that they can improve the quality of the QTL detection. Those methods also have a larger inference power. For example, they can be extended to integrate environmental indices like temperature or precipitation to better understand the mechanisms behind the QTLxE effects. Therefore, our methodology allows the exploitation of the full MPP-ME data potential: to estimate QTL effect variation (a) within the MPP between sub-populations due to different genetic backgrounds and (b) between environments.
多亲本群体多环境 QTL 实验数据应联合分析,以估计群体内和环境间的 QTL 效应变化。通常,通过分析跨环境“平均”基因型值来检测多亲本群体(MPP)数据中的 QTL。这种方法忽略了特定于环境的 QTL(QTLxE)效应。单独运行单环境分析是测量 QTLxE 效应的一种可能性,但由于在不同环境中使用相同基因型,这些分析无法对遗传协方差进行建模。在本文中,我们提出了使用来自多个环境的数据同时分析 MPP-ME QTL 实验并对基因型协方差进行建模的方法。使用来自欧盟-NAM 弗林特群体的数据,我们表明这些方法可以估计 QTLxE 效应,并且可以提高 QTL 检测的质量。这些方法还具有更大的推断能力。例如,它们可以扩展为整合环境指数(如温度或降水),以更好地理解 QTLxE 效应背后的机制。因此,我们的方法允许充分利用 MPP-ME 数据的潜力:(a)在多亲本群体内由于不同的遗传背景而估计 QTL 效应变化,以及(b)在环境间估计 QTL 效应变化。