Zhao Yannan, Imura Tomohiro, Leman Luke J, Curtiss Linda K, Maryanoff Bruce E, Ghadiri M Reza
Department of Chemistry, ‡Department of Immunology and Microbial Science, and §The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States.
J Am Chem Soc. 2013 Sep 11;135(36):13414-24. doi: 10.1021/ja404714a. Epub 2013 Aug 26.
We describe an approach for engineering peptide-lipid nanoparticles that function similarly to high-density lipoprotein (HDL). Branched, multivalent constructs, bearing multiple 23- or 16-amino-acid peptides, were designed, synthesized, and combined with phospholipids to produce nanometer-scale discoidal HDL-like particles. A variety of biophysical techniques were employed to characterize the constructs, including size exclusion chromatography, analytical ultracentrifuge sedimentation, circular dichroism, transmission electron microscopy, and fluorescence spectroscopy. The nanoparticles functioned in vitro (human and mouse plasma) and in vivo (mice) to rapidly remodel large native HDLs into small lipid-poor HDL particles, which are key acceptors of cholesterol in reverse cholesterol transport. Fluorescent labeling studies showed that the constituents of the nanoparticles readily distributed into native HDLs, such that the peptide constructs coexisted with apolipoprotein A-I (apoA-I), the main structural protein in HDLs. Importantly, nanolipid particles containing multivalent peptides promoted efficient cellular cholesterol efflux and were functionally superior to those derived from monomeric apoA-I mimetic peptides. The multivalent peptide-lipid nanoparticles were also remarkably stable toward enzymatic digestion in vitro and displayed long half-lives and desirable pharmacokinetic profiles in mice, providing a real practical advantage over previously studied linear or tandem helical peptides. Encouragingly, a two-week exploratory efficacy study in a widely used animal model for atherosclerosis research (LDLr-null mice) using nanoparticles constructed from a trimeric peptide demonstrated an exceptional 50% reduction in the plasma total cholesterol levels compared to the control group. Altogether, the studies reported here point to an attractive avenue for designing synthetic, HDL-like nanoparticles, with potential for treating atherosclerosis.
我们描述了一种构建肽 - 脂质纳米颗粒的方法,该纳米颗粒的功能类似于高密度脂蛋白(HDL)。设计、合成了带有多个23或16个氨基酸肽的分支多价构建体,并将其与磷脂结合,以产生纳米级盘状HDL样颗粒。采用了多种生物物理技术对构建体进行表征,包括尺寸排阻色谱法、分析型超速离心沉降法、圆二色性、透射电子显微镜和荧光光谱法。这些纳米颗粒在体外(人和小鼠血浆)和体内(小鼠)发挥作用,能迅速将大的天然HDL重塑为小的低脂HDL颗粒,而这些小颗粒是逆向胆固醇转运中胆固醇的关键受体。荧光标记研究表明,纳米颗粒的成分很容易分布到天然HDL中,使得肽构建体与HDL中的主要结构蛋白载脂蛋白A-I(apoA-I)共存。重要的是,含有多价肽的纳米脂质颗粒促进了有效的细胞胆固醇流出,并且在功能上优于那些由单体apoA-I模拟肽衍生的颗粒。多价肽 - 脂质纳米颗粒在体外对酶消化也具有显著的稳定性,在小鼠体内显示出长半衰期和理想的药代动力学特征,与先前研究的线性或串联螺旋肽相比具有实际优势。令人鼓舞的是,在一种广泛用于动脉粥样硬化研究的动物模型(LDLr基因敲除小鼠)中,使用由三聚体肽构建的纳米颗粒进行的为期两周的探索性疗效研究表明,与对照组相比,血浆总胆固醇水平异常降低了50%。总之,本文报道的研究指出了一条设计合成HDL样纳米颗粒的有吸引力的途径,具有治疗动脉粥样硬化的潜力。