Suppr超能文献

用于超顺应电路和智能接口的图案化独立导电纳米膜。

Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces.

机构信息

Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy.

出版信息

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9461-9. doi: 10.1021/am402142c. Epub 2013 Sep 19.

Abstract

A process is presented for the fabrication of patterned ultrathin free-standing conductive nanofilms based on an all-polymer bilayer structure composed of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) and poly(lactic acid) (PEDOT:PSS/PLA). Based on the strategy recently introduced by our group for producing large area free-standing nanofilms of conductive polymers with ultrahigh conformability, here an inkjet subtractive patterning technique was used, with localized overoxidation of PEDOT:PSS that caused the local irreversible loss of electrical conductivity. Different pattern geometries (e.g., interdigitated electrodes with various spacing, etc.) were tested for validating the proposed process. The fabrication of individually addressable microelectrodes and simple circuits on nanofilm having thickness ∼250 nm has been demonstrated. Using this strategy, mechanically robust, conformable ultrathin polymer films could be produced that can be released in water as free-standing nanofilms and/or collected on surfaces with arbitrary shapes, topography and compliance, including human skin. The patterned bilayer nanofilms were characterized as regards their morphology, thickness, topography, conductivity, and electrochemical behavior. In addition, the electrochemical switching of surface properties has been evaluated by means of contact angle measurements. These novel conductive materials can find use as ultrathin, conformable electronic devices and in many bioelectrical applications. Moreover, by exploiting the electrochemical properties of conducting polymers, they can act as responsive smart biointerfaces and in the field of conformable bioelectronics, for example, as electrodes on tissues or smart conductive substrates for cell culturing and stimulation.

摘要

介绍了一种基于聚(3,4-亚乙基二氧噻吩)/聚(苯乙烯磺酸盐)和聚乳酸(PEDOT:PSS/PLA)的全聚合物双层结构制备图案化超薄独立导电纳米薄膜的方法。基于我们小组最近提出的用于生产具有超高顺应性的导电聚合物大面积独立纳米薄膜的策略,这里采用了喷墨减法图案化技术,对PEDOT:PSS 进行局部过度氧化,导致局部电导率不可逆丧失。测试了不同的图案几何形状(例如,具有不同间距的叉指电极等)以验证所提出的工艺。已经证明了在厚度约为 250nm 的纳米薄膜上制造单独寻址的微电极和简单电路。使用这种策略,可以生产出机械强度高、顺应性好的超薄聚合物薄膜,可以在水中释放为独立的纳米薄膜,或者收集在具有任意形状、拓扑和顺应性的表面上,包括人体皮肤。对双层纳米薄膜的形貌、厚度、形貌、导电性和电化学行为进行了表征。此外,通过接触角测量评估了表面性质的电化学开关性能。这些新型导电材料可用作超薄、顺应性电子器件和许多生物电应用。此外,通过利用导电聚合物的电化学性质,它们可以作为响应性智能生物界面,并在顺应性生物电子学领域,例如作为组织上的电极或用于细胞培养和刺激的智能导电基底。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验