Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
J Neurosci. 2013 Sep 4;33(36):14342-53. doi: 10.1523/JNEUROSCI.2275-13.2013.
Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity.
正常听力取决于将自身产生的声音与其他声音区分开来的能力,而这种能力被认为涉及到将运动指令信号的副本传递到听觉系统各个层次的神经回路。虽然皮质水平的这种相互作用被认为有助于运动过程中的听觉理解,并在病理状态下引发听觉幻觉,但连接运动和听觉皮质的回路的突触组织和功能仍不清楚。在这里,我们描述了在小鼠中进行的实验,这些实验很好地描述了将与运动相关的信号传递到听觉皮质的回路。通过逆行病毒追踪,我们确定了浅层和深层中间颗粒运动皮层(M2)中的神经元直接投射到听觉皮层,并且这些深层细胞的一些轴突也靶向脑干运动区域。通过在体全细胞生理学、光遗传学和药理学,我们确定 M2 轴突在听觉皮层中形成兴奋性突触,但对听觉皮层神经元活动施加主要的抑制作用,部分通过涉及钙蛋白阳性中间神经元的前馈抑制来介导。通过在体细胞内生理学、光遗传学和声音播放,我们还发现直接激活听觉皮层中的 M2 轴突末梢可抑制听觉皮层神经元的自发性和刺激诱发的突触活动,并且这种效应取决于运动皮质活动和听觉刺激的相对时间。这些实验描绘了一个皮质-皮质回路的结构和功能特性,该回路可能使听觉皮质活动与运动相关的抑制相关。