Center for Neuroscience, University of California, Davis, CA 95618, USA.
Neuron. 2013 Sep 4;79(5):987-1000. doi: 10.1016/j.neuron.2013.06.041.
Although many studies have identified neural correlates of memory, relatively little is known about the circuit properties connecting single-neuron physiology to behavior. Here we developed a modeling framework to bridge this gap and identify circuit interactions capable of maintaining short-term memory. Unlike typical studies that construct a phenomenological model and test whether it reproduces select aspects of neuronal data, we directly fit the synaptic connectivity of an oculomotor memory circuit to a broad range of anatomical, electrophysiological, and behavioral data. Simultaneous fits to all data, combined with sensitivity analyses, revealed complementary roles of synaptic and neuronal recruitment thresholds in providing the nonlinear interactions required to generate the observed circuit behavior. This work provides a methodology for identifying the cellular and synaptic mechanisms underlying short-term memory and demonstrates how the anatomical structure of a circuit may belie its functional organization.
虽然许多研究已经确定了记忆的神经相关性,但对于将单个神经元生理学与行为联系起来的电路特性,我们知之甚少。在这里,我们开发了一个建模框架来弥合这一差距,并确定能够维持短期记忆的电路相互作用。与典型的研究不同,我们没有构建一个现象学模型并测试它是否再现了神经元数据的某些方面,而是直接将眼球运动记忆电路的突触连接拟合到广泛的解剖学、电生理学和行为数据中。对所有数据的同时拟合,结合敏感性分析,揭示了突触和神经元募集阈值在提供生成观察到的电路行为所需的非线性相互作用方面的互补作用。这项工作为确定短期记忆的细胞和突触机制提供了一种方法,并展示了电路的解剖结构如何与其功能组织相矛盾。